Enhanced Charge Injection Properties of Organic Field-Effect Transistor by Molecular Implantation Doping

© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 31(2019), 10 vom: 30. März, Seite e1806697
1. Verfasser: Kim, Youngrok (VerfasserIn)
Weitere Verfasser: Chung, Seungjun, Cho, Kyungjune, Harkin, David, Hwang, Wang-Taek, Yoo, Daekyoung, Kim, Jae-Keun, Lee, Woocheol, Song, Younggul, Ahn, Heebeom, Hong, Yongtaek, Sirringhaus, Henning, Kang, Keehoon, Lee, Takhee
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article F4-TCNQ PBTTT charge injection doping organic field-effect transistors solid-state diffusion
Beschreibung
Zusammenfassung:© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Organic semiconductors (OSCs) have been widely studied due to their merits such as mechanical flexibility, solution processability, and large-area fabrication. However, OSC devices still have to overcome contact resistance issues for better performances. Because of the Schottky contact at the metal-OSC interfaces, a non-ideal transfer curve feature often appears in the low-drain voltage region. To improve the contact properties of OSCs, there have been several methods reported, including interface treatment by self-assembled monolayers and introducing charge injection layers. Here, a selective contact doping of 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4 -TCNQ) by solid-state diffusion in poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophene) (PBTTT) to enhance carrier injection in bottom-gate PBTTT organic field-effect transistors (OFETs) is demonstrated. Furthermore, the effect of post-doping treatment on diffusion of F4 -TCNQ molecules in order to improve the device stability is investigated. In addition, the application of the doping technique to the low-voltage operation of PBTTT OFETs with high-k gate dielectrics demonstrated a potential for designing scalable and low-power organic devices by utilizing doping of conjugated polymers
Beschreibung:Date Completed 06.03.2019
Date Revised 22.02.2021
published: Print-Electronic
ErratumIn: Adv Mater. 2020 Sep;32(38):e2003126. - PMID 33617046
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.201806697