Combined Experimental and Theoretical Study of Weak Polyelectrolyte Brushes in Salt Mixtures
The swelling behavior of a hydrophobic poly(2diisopropylamino)ethyl methacrylate (PDPA) brush immersed in aqueous solutions of single and mixed salts has been investigated using ellipsometry and numerical self-consistent field (nSCF) theory. As a function of solution ionic strength, the osmotic and...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 35(2019), 7 vom: 19. Feb., Seite 2709-2718 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2019
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article |
Zusammenfassung: | The swelling behavior of a hydrophobic poly(2diisopropylamino)ethyl methacrylate (PDPA) brush immersed in aqueous solutions of single and mixed salts has been investigated using ellipsometry and numerical self-consistent field (nSCF) theory. As a function of solution ionic strength, the osmotic and salted brush regimes of weak polyelectrolyte brushes as well as substantial specific anion effects in the presence of K+ salts of Cl-, NO3-, and SCN- are found. For solutions containing mixtures of NO3- and Cl-, the brush swelling is the same as one would expect on the basis of the concentration-weighted average of the brush behavior in the single salt solutions. However, in mixtures of SCN- and Cl-, the swelling response is more complicated and substantial divergence from ideal behavior is observed. Mean-field theory shows excellent qualitative agreement with the ellipsometry findings. nSCF reveals that for the SCN-/Cl- cases the swelling behavior of the PDPA brush most likely arises from the predominant localization of the weakly hydrated SCN- within the brush compared to the more strongly hydrated Cl- |
---|---|
Beschreibung: | Date Revised 25.02.2020 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/acs.langmuir.8b03838 |