Construction of a Liquid Crystal-Based Sensing Platform for Sensitive and Selective Detection of l-Phenylalanine Based on Alkaline Phosphatase

The detection of l-phenylalanine (l-Phe) has become one of the most pressing issues concerning diagnosis and treatment of phenylketonuria in neonates; however, a simple and robust methodology is yet to be developed. Here, the application of novel liquid crystals (LCs)-sensing platform for sensitive,...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 35(2019), 2 vom: 15. Jan., Seite 461-467
1. Verfasser: Zhou, Lele (VerfasserIn)
Weitere Verfasser: Hu, Qiongzheng, Kang, Qi, Fang, Ming, Yu, Li
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:The detection of l-phenylalanine (l-Phe) has become one of the most pressing issues concerning diagnosis and treatment of phenylketonuria in neonates; however, a simple and robust methodology is yet to be developed. Here, the application of novel liquid crystals (LCs)-sensing platform for sensitive, selective, and label-free detection of l-Phe was reported at the first time. We devised a strategy to fabricate the sodium monododecyl phosphate (SMP)-decorated LC sensing platform with the appearance of dark. Then, a dark to bright (D-B) optical images alteration of LCs was observed after transferring alkaline phosphatase (ALP) to the interface, owing to cleavage of SMP induced by ALP. LCs remained dark images after the SMP-decorated interface in contact with the pre-incubated ALP and l-Phe. Such optical appearance resulted from the inhibition of ALP by l-Phe, which was further verified by the isothermal titration calorimetry (ITC). The strategy was applied to sensing l-Phe, which have been proven to allow for sensitively and selectively differentiation of l-Phe from interfering compounds with similar aromatic groups, as well as seven other essential amino acids. More importantly, the detection limit of l-Phe reached 1 pg/mL in urine samples, further demonstrating its value in the practical applications. Results obtained in this study clearly demonstrated the superiority of LCs toward the l-Phe detection, which can pave a way for the development of high performance and robust probes for l-Phe detection in clinical applications
Beschreibung:Date Revised 20.11.2019
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.8b03682