Learning Reasoning-Decision Networks for Robust Face Alignment

In this paper, we propose an end-to-end reasoning-decision networks (RDN) approach for robust face alignment via policy gradient. Unlike the conventional coarse-to-fine approaches which likely lead to bias prediction due to poor initialization, our approach aims to learn a policy by leveraging raw p...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 42(2020), 3 vom: 15. März, Seite 679-693
Auteur principal: Liu, Hao (Auteur)
Autres auteurs: Lu, Jiwen, Guo, Minghao, Wu, Suping, Zhou, Jie
Format: Article en ligne
Langue:English
Publié: 2020
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article