Learning Reasoning-Decision Networks for Robust Face Alignment
In this paper, we propose an end-to-end reasoning-decision networks (RDN) approach for robust face alignment via policy gradient. Unlike the conventional coarse-to-fine approaches which likely lead to bias prediction due to poor initialization, our approach aims to learn a policy by leveraging raw p...
Description complète
Détails bibliographiques
Publié dans: | IEEE transactions on pattern analysis and machine intelligence. - 1979. - 42(2020), 3 vom: 15. März, Seite 679-693
|
Auteur principal: |
Liu, Hao
(Auteur) |
Autres auteurs: |
Lu, Jiwen,
Guo, Minghao,
Wu, Suping,
Zhou, Jie |
Format: | Article en ligne
|
Langue: | English |
Publié: |
2020
|
Accès à la collection: | IEEE transactions on pattern analysis and machine intelligence
|
Sujets: | Journal Article |