Learning Reasoning-Decision Networks for Robust Face Alignment

In this paper, we propose an end-to-end reasoning-decision networks (RDN) approach for robust face alignment via policy gradient. Unlike the conventional coarse-to-fine approaches which likely lead to bias prediction due to poor initialization, our approach aims to learn a policy by leveraging raw p...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 42(2020), 3 vom: 15. März, Seite 679-693
1. Verfasser: Liu, Hao (VerfasserIn)
Weitere Verfasser: Lu, Jiwen, Guo, Minghao, Wu, Suping, Zhou, Jie
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM291605680
003 DE-627
005 20250224120842.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2018.2885298  |2 doi 
028 5 2 |a pubmed25n0971.xml 
035 |a (DE-627)NLM291605680 
035 |a (NLM)30530310 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Hao  |e verfasserin  |4 aut 
245 1 0 |a Learning Reasoning-Decision Networks for Robust Face Alignment 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 12.02.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper, we propose an end-to-end reasoning-decision networks (RDN) approach for robust face alignment via policy gradient. Unlike the conventional coarse-to-fine approaches which likely lead to bias prediction due to poor initialization, our approach aims to learn a policy by leveraging raw pixels to reason a subset of shape candidates, sequentially making plausible decisions to remove outliers for robust initialization. To achieve this, we formulate face alignment as a Markov decision process by defining an agent, which typically interacts with a trajectory of states, actions, state transitions and rewards. The agent seeks an optimal shape searching policy over the whole shape space by maximizing a discounted sum of the received values. To further improve the alignment performance, we develop an LSTM-based value function to evaluate the shape quality. During the training procedure, we adjust the gradient of our value function in directions of the policy gradient. This prevents our training goal from being trapped into local optima entangled by both the pose deformations and appearance variations especially in unconstrained environments. Experimental results show that our proposed RDN consistently outperforms most state-of-the-art approaches on four widely-evaluated challenging datasets 
650 4 |a Journal Article 
700 1 |a Lu, Jiwen  |e verfasserin  |4 aut 
700 1 |a Guo, Minghao  |e verfasserin  |4 aut 
700 1 |a Wu, Suping  |e verfasserin  |4 aut 
700 1 |a Zhou, Jie  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 42(2020), 3 vom: 15. März, Seite 679-693  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:42  |g year:2020  |g number:3  |g day:15  |g month:03  |g pages:679-693 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2018.2885298  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 42  |j 2020  |e 3  |b 15  |c 03  |h 679-693