HyperReconNet : Joint Coded Aperture Optimization and Image Reconstruction for Compressive Hyperspectral Imaging

Coded aperture snapshot spectral imaging (CASSI) system encodes the 3D hyperspectral image (HSI) within a single 2D compressive image and then reconstructs the underlying HSI by employing an inverse optimization algorithm, which equips with the distinct advantage of snapshot but usually results in l...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2018) vom: 29. Nov.
1. Verfasser: Wang, Lizhi (VerfasserIn)
Weitere Verfasser: Zhang, Tao, Fu, Ying, Huang, Hua
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM291383181
003 DE-627
005 20240229162047.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2018.2884076  |2 doi 
028 5 2 |a pubmed24n1308.xml 
035 |a (DE-627)NLM291383181 
035 |a (NLM)30507509 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Lizhi  |e verfasserin  |4 aut 
245 1 0 |a HyperReconNet  |b Joint Coded Aperture Optimization and Image Reconstruction for Compressive Hyperspectral Imaging 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Coded aperture snapshot spectral imaging (CASSI) system encodes the 3D hyperspectral image (HSI) within a single 2D compressive image and then reconstructs the underlying HSI by employing an inverse optimization algorithm, which equips with the distinct advantage of snapshot but usually results in low reconstruction accuracy. To improve the accuracy, existing methods attempt to design either alternative coded apertures or advanced reconstruction methods, but cannot connect these two aspects via a unified framework, which limits the accuracy improvement. In this paper, we propose a convolution neural network (CNN) based endto- end method to boost the accuracy by jointly optimizing the coded aperture and the reconstruction method. On the one hand, based on the nature of CASSI forward model, we design a repeated pattern for the coded aperture, whose entities are learned by acting as the network weights. On the other hand, we conduct the reconstruction through simultaneously exploiting intrinsic properties within HSI - the extensive correlations across the spatial and the spectral dimensions. By leveraging the power of deep learning, the coded aperture design and the image reconstruction are connected and optimized via a unified framework. Experimental results show that our method outperforms the state-of-the-art methods under both comprehensive quantitative metrics and perceptive quality 
650 4 |a Journal Article 
700 1 |a Zhang, Tao  |e verfasserin  |4 aut 
700 1 |a Fu, Ying  |e verfasserin  |4 aut 
700 1 |a Huang, Hua  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g (2018) vom: 29. Nov.  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g year:2018  |g day:29  |g month:11 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2018.2884076  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2018  |b 29  |c 11