HyperReconNet : Joint Coded Aperture Optimization and Image Reconstruction for Compressive Hyperspectral Imaging

Coded aperture snapshot spectral imaging (CASSI) system encodes the 3D hyperspectral image (HSI) within a single 2D compressive image and then reconstructs the underlying HSI by employing an inverse optimization algorithm, which equips with the distinct advantage of snapshot but usually results in l...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2018) vom: 29. Nov.
1. Verfasser: Wang, Lizhi (VerfasserIn)
Weitere Verfasser: Zhang, Tao, Fu, Ying, Huang, Hua
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Coded aperture snapshot spectral imaging (CASSI) system encodes the 3D hyperspectral image (HSI) within a single 2D compressive image and then reconstructs the underlying HSI by employing an inverse optimization algorithm, which equips with the distinct advantage of snapshot but usually results in low reconstruction accuracy. To improve the accuracy, existing methods attempt to design either alternative coded apertures or advanced reconstruction methods, but cannot connect these two aspects via a unified framework, which limits the accuracy improvement. In this paper, we propose a convolution neural network (CNN) based endto- end method to boost the accuracy by jointly optimizing the coded aperture and the reconstruction method. On the one hand, based on the nature of CASSI forward model, we design a repeated pattern for the coded aperture, whose entities are learned by acting as the network weights. On the other hand, we conduct the reconstruction through simultaneously exploiting intrinsic properties within HSI - the extensive correlations across the spatial and the spectral dimensions. By leveraging the power of deep learning, the coded aperture design and the image reconstruction are connected and optimized via a unified framework. Experimental results show that our method outperforms the state-of-the-art methods under both comprehensive quantitative metrics and perceptive quality
Beschreibung:Date Revised 27.02.2024
published: Print-Electronic
Citation Status Publisher
ISSN:1941-0042
DOI:10.1109/TIP.2018.2884076