On-Device Scalable Image-Based Localization via Prioritized Cascade Search and Fast One-Many RANSAC

We present the design of an entire on-device system for large-scale urban localization using images. The proposed design integrates compact image retrieval and 2D-3D correspondence search to estimate the location in extensive city regions. Our design is GPS agnostic and does not require network conn...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 28(2019), 4 vom: 19. Apr., Seite 1675-1690
1. Verfasser: Tran, Ngoc-Trung (VerfasserIn)
Weitere Verfasser: Le Tan, Dang-Khoa, Doan, Anh-Dzung, Do, Thanh-Toan, Bui, Tuan-Anh, Tan, Mengxuan, Cheung, Ngai-Man
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:We present the design of an entire on-device system for large-scale urban localization using images. The proposed design integrates compact image retrieval and 2D-3D correspondence search to estimate the location in extensive city regions. Our design is GPS agnostic and does not require network connection. In order to overcome the resource constraints of mobile devices, we propose a system design that leverages the scalability advantage of image retrieval and accuracy of 3D model-based localization. Furthermore, we propose a new hashing-based cascade search for fast computation of 2D-3D correspondences. In addition, we propose a new one-many RANSAC for accurate pose estimation. The new one-many RANSAC addresses the challenge of repetitive building structures (e.g. windows and balconies) in urban localization. Extensive experiments demonstrate that our 2D-3D correspondence search achieves the state-of-the-art localization accuracy on multiple benchmark datasets. Furthermore, our experiments on a large Google street view image dataset show the potential of large-scale localization entirely on a typical mobile device
Beschreibung:Date Completed 19.12.2018
Date Revised 19.12.2018
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1941-0042
DOI:10.1109/TIP.2018.2881829