Adsorption and Interfacial Layer Structure of Unmodified Nanocrystalline Cellulose at Air/Water Interfaces
Nanocrystalline cellulose (NCC) is a promising biological nanoparticle for the stabilization of fluid interfaces. However, the adsorption and interfacial layer structure of NCC are poorly understood as it is currently unknown how to form NCC interfacial layers. Herein, we present parameters for th...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 34(2018), 50 vom: 18. Dez., Seite 15195-15202 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2018
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't |
Zusammenfassung: | Nanocrystalline cellulose (NCC) is a promising biological nanoparticle for the stabilization of fluid interfaces. However, the adsorption and interfacial layer structure of NCC are poorly understood as it is currently unknown how to form NCC interfacial layers. Herein, we present parameters for the adsorption of unmodified NCC at the air-water (A/W) interface. Initial NCC adsorption is limited by diffusion, followed by monolayer saturation and decrease in surface tension at the time scale of hours. These results confirm the current hypothesis of a Pickering stabilization. NCC interfacial performance can be modulated by salt-induced charge screening, enhancing adsorption kinetics, surface load, and interfacial viscoelasticity. Adsorbed NCC layers were visualized by atomic force microscopy at planar Langmuir films and curved air bubbles, whereat NCC coverage was higher at curved interfaces. Structural analysis by neutron reflectometry revealed that NCC forms a discontinuous monolayer with crystallites oriented in the interfacial plane at a contact angle < 90°, favoring NCC desorption upon area compression. This provides the fundamental framework on the formation and structure of NCC layers at the A/W interface, paving the way for exploiting NCC interfacial stabilization for tailored colloidal materials |
---|---|
Beschreibung: | Date Completed 04.02.2019 Date Revised 15.02.2019 published: Print-Electronic ErratumIn: Langmuir. 2020 Feb 25;36(7):1848-1849. - PMID 32052972 Citation Status PubMed-not-MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/acs.langmuir.8b03056 |