Richer Convolutional Features for Edge Detection

Edge detection is a fundamental problem in computer vision. Recently, convolutional neural networks (CNNs) have pushed forward this field significantly. Existing methods which adopt specific layers of deep CNNs may fail to capture complex data structures caused by variations of scales and aspect rat...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 41(2019), 8 vom: 01. Aug., Seite 1939-1946
1. Verfasser: Liu, Yun (VerfasserIn)
Weitere Verfasser: Cheng, Ming-Ming, Hu, Xiaowei, Bian, Jia-Wang, Zhang, Le, Bai, Xiang, Tang, Jinhui
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM290210895
003 DE-627
005 20231225064233.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2018.2878849  |2 doi 
028 5 2 |a pubmed24n0967.xml 
035 |a (DE-627)NLM290210895 
035 |a (NLM)30387723 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Yun  |e verfasserin  |4 aut 
245 1 0 |a Richer Convolutional Features for Edge Detection 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 22.08.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Edge detection is a fundamental problem in computer vision. Recently, convolutional neural networks (CNNs) have pushed forward this field significantly. Existing methods which adopt specific layers of deep CNNs may fail to capture complex data structures caused by variations of scales and aspect ratios. In this paper, we propose an accurate edge detector using richer convolutional features (RCF). RCF encapsulates all convolutional features into more discriminative representation, which makes good usage of rich feature hierarchies, and is amenable to training via backpropagation. RCF fully exploits multiscale and multilevel information of objects to perform the image-to-image prediction holistically. Using VGG16 network, we achieve state-of-the-art performance on several available datasets. When evaluating on the well-known BSDS500 benchmark, we achieve ODS F-measure of 0.811 while retaining a fast speed (8 FPS). Besides, our fast version of RCF achieves ODS F-measure of 0.806 with 30 FPS. We also demonstrate the versatility of the proposed method by applying RCF edges for classical image segmentation 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Cheng, Ming-Ming  |e verfasserin  |4 aut 
700 1 |a Hu, Xiaowei  |e verfasserin  |4 aut 
700 1 |a Bian, Jia-Wang  |e verfasserin  |4 aut 
700 1 |a Zhang, Le  |e verfasserin  |4 aut 
700 1 |a Bai, Xiang  |e verfasserin  |4 aut 
700 1 |a Tang, Jinhui  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 41(2019), 8 vom: 01. Aug., Seite 1939-1946  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:41  |g year:2019  |g number:8  |g day:01  |g month:08  |g pages:1939-1946 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2018.2878849  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 41  |j 2019  |e 8  |b 01  |c 08  |h 1939-1946