Unified Confidence Estimation Networks for Robust Stereo Matching

We present a deep architecture that estimates a stereo confidence, which is essential for improving the accuracy of stereo matching algorithms. In contrast to existing methods based on deep convolutional neural networks (CNNs) that rely on only one of the matching cost volume or estimated disparity...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 28(2019), 3 vom: 26. März, Seite 1299-1313
1. Verfasser: Kim, Sunok (VerfasserIn)
Weitere Verfasser: Min, Dongbo, Kim, Seungryong, Sohn, Kwanghoon
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM290053463
003 DE-627
005 20250224073228.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2018.2878325  |2 doi 
028 5 2 |a pubmed25n0966.xml 
035 |a (DE-627)NLM290053463 
035 |a (NLM)30371368 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kim, Sunok  |e verfasserin  |4 aut 
245 1 0 |a Unified Confidence Estimation Networks for Robust Stereo Matching 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 13.11.2018 
500 |a Date Revised 13.11.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We present a deep architecture that estimates a stereo confidence, which is essential for improving the accuracy of stereo matching algorithms. In contrast to existing methods based on deep convolutional neural networks (CNNs) that rely on only one of the matching cost volume or estimated disparity map, our network estimates the stereo confidence by using the two heterogeneous inputs simultaneously. Specifically, the matching probability volume is first computed from the matching cost volume with residual networks and a pooling module in a manner that yields greater robustness. The confidence is then estimated through a unified deep network that combines confidence features extracted both from the matching probability volume and its corresponding disparity. In addition, our method extracts the confidence features of the disparity map by applying multiple convolutional filters with varying sizes to an input disparity map. To learn our networks in a semi-supervised manner, we propose a novel loss function that use confident points to compute the image reconstruction loss. To validate the effectiveness of our method in a disparity post-processing step, we employ three post-processing approaches; cost modulation, ground control points-based propagation, and aggregated ground control points-based propagation. Experimental results demonstrate that our method outperforms state-of-the-art confidence estimation methods on various benchmarks 
650 4 |a Journal Article 
700 1 |a Min, Dongbo  |e verfasserin  |4 aut 
700 1 |a Kim, Seungryong  |e verfasserin  |4 aut 
700 1 |a Sohn, Kwanghoon  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 28(2019), 3 vom: 26. März, Seite 1299-1313  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:28  |g year:2019  |g number:3  |g day:26  |g month:03  |g pages:1299-1313 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2018.2878325  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 28  |j 2019  |e 3  |b 26  |c 03  |h 1299-1313