|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM289204364 |
003 |
DE-627 |
005 |
20250224051614.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2018 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.2144/btn-2018-0041
|2 doi
|
028 |
5 |
2 |
|a pubmed25n0963.xml
|
035 |
|
|
|a (DE-627)NLM289204364
|
035 |
|
|
|a (NLM)30284937
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Santana-Calvo, Carmen
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Robust evaluation of intermolecular FRET using a large Stokes shift fluorophore as a donor
|
264 |
|
1 |
|c 2018
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 05.08.2019
|
500 |
|
|
|a Date Revised 05.08.2019
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a Fluorescence (or Förster) resonance energy transfer (FRET) is a straightforward and sensitive technique to evaluate molecular interactions. However, most of the popular FRET pairs suffer cross-excitation of the acceptor, which could lead to false positives. To overcome this problem, we selected a large Stokes shift (LSS) fluorophore as a FRET donor. As a successful example, we employed a new FRET pair mAmetrine (an LSS yellow fluorescence protein)/DY-547 (a cyanine derivative) to substitute CFP/fluorescein that we previously employed to study molecular interactions between cyclic nucleotide-binding domains and cyclic nucleotides. The new FRET pair is practically free of cross-excitation of the acceptor. Namely, a change in the fluorescence spectral shape implies evidence of FRET without other control experiments
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
4 |
|a binding assay
|
650 |
|
4 |
|a fluorescent protein
|
650 |
|
4 |
|a intermolecular FRET
|
650 |
|
4 |
|a large Stokes shift
|
650 |
|
7 |
|a Fluorescent Dyes
|2 NLM
|
650 |
|
7 |
|a Guanine Nucleotide Exchange Factors
|2 NLM
|
650 |
|
7 |
|a Luminescent Proteins
|2 NLM
|
650 |
|
7 |
|a RAPGEF3 protein, human
|2 NLM
|
650 |
|
7 |
|a Cyclic AMP
|2 NLM
|
650 |
|
7 |
|a E0399OZS9N
|2 NLM
|
700 |
1 |
|
|a Romero, Francisco
|e verfasserin
|4 aut
|
700 |
1 |
|
|a López-González, Ignacio
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Nishigaki, Takuya
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t BioTechniques
|d 1993
|g 65(2018), 4 vom: 02. Okt., Seite 211-218
|w (DE-627)NLM012627046
|x 1940-9818
|7 nnns
|
773 |
1 |
8 |
|g volume:65
|g year:2018
|g number:4
|g day:02
|g month:10
|g pages:211-218
|
856 |
4 |
0 |
|u http://dx.doi.org/10.2144/btn-2018-0041
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_21
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_39
|
912 |
|
|
|a GBV_ILN_40
|
912 |
|
|
|a GBV_ILN_50
|
912 |
|
|
|a GBV_ILN_60
|
912 |
|
|
|a GBV_ILN_62
|
912 |
|
|
|a GBV_ILN_65
|
912 |
|
|
|a GBV_ILN_70
|
912 |
|
|
|a GBV_ILN_99
|
912 |
|
|
|a GBV_ILN_121
|
912 |
|
|
|a GBV_ILN_130
|
912 |
|
|
|a GBV_ILN_227
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_618
|
912 |
|
|
|a GBV_ILN_640
|
912 |
|
|
|a GBV_ILN_754
|
912 |
|
|
|a GBV_ILN_2001
|
912 |
|
|
|a GBV_ILN_2002
|
912 |
|
|
|a GBV_ILN_2003
|
912 |
|
|
|a GBV_ILN_2005
|
912 |
|
|
|a GBV_ILN_2006
|
912 |
|
|
|a GBV_ILN_2007
|
912 |
|
|
|a GBV_ILN_2008
|
912 |
|
|
|a GBV_ILN_2009
|
912 |
|
|
|a GBV_ILN_2010
|
912 |
|
|
|a GBV_ILN_2012
|
912 |
|
|
|a GBV_ILN_2015
|
912 |
|
|
|a GBV_ILN_2018
|
912 |
|
|
|a GBV_ILN_2023
|
912 |
|
|
|a GBV_ILN_2035
|
912 |
|
|
|a GBV_ILN_2040
|
912 |
|
|
|a GBV_ILN_2060
|
912 |
|
|
|a GBV_ILN_2099
|
912 |
|
|
|a GBV_ILN_2105
|
912 |
|
|
|a GBV_ILN_2121
|
912 |
|
|
|a GBV_ILN_2470
|
951 |
|
|
|a AR
|
952 |
|
|
|d 65
|j 2018
|e 4
|b 02
|c 10
|h 211-218
|