Multi-Domain & Multi-Task Learning for Human Action Recognition

Domain-invariant (view-invariant & modalityinvariant) feature representation is essential for human action recognition. Moreover, given a discriminative visual representation, it is critical to discover the latent correlations among multiple actions in order to facilitate action modeling. To add...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2018) vom: 28. Sept.
1. Verfasser: Liu, An-An (VerfasserIn)
Weitere Verfasser: Xu, Ning, Nie, Wei-Zhi, Su, Yu-Ting, Zhang, Yong-Dong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM28916981X
003 DE-627
005 20250224051132.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2018.2872879  |2 doi 
028 5 2 |a pubmed25n0963.xml 
035 |a (DE-627)NLM28916981X 
035 |a (NLM)30281454 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, An-An  |e verfasserin  |4 aut 
245 1 0 |a Multi-Domain & Multi-Task Learning for Human Action Recognition 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Domain-invariant (view-invariant & modalityinvariant) feature representation is essential for human action recognition. Moreover, given a discriminative visual representation, it is critical to discover the latent correlations among multiple actions in order to facilitate action modeling. To address these problems, we propose a multi-domain & multi-task learning (MDMTL) method to (1) extract domain-invariant information for multi-view and multi-modal action representation and (2) explore the relatedness among multiple action categories. Specifically, we present a sparse transfer learning-based method to co-embed multi-domain (multi-view & multi-modality) data into a single common space for discriminative feature learning. Additionally, visual feature learning is incorporated into the multitask learning framework, with the Frobenius-norm regularization term and the sparse constraint term, for joint task modeling and task relatedness-induced feature learning. To the best of our knowledge, MDMTL is the first supervised framework to jointly realize domain-invariant feature learning and task modeling for multi-domain action recognition. Experiments conducted on the INRIA Xmas Motion Acquisition Sequences (IXMAS) dataset, the MSR Daily Activity 3D (DailyActivity3D) dataset, and the Multi-modal & Multi-view & Interactive (M2I) dataset, which is the most recent and largest multi-view and multi-model action recognition dataset, demonstrate the superiority of MDMTL over the state-of-the-art approaches 
650 4 |a Journal Article 
700 1 |a Xu, Ning  |e verfasserin  |4 aut 
700 1 |a Nie, Wei-Zhi  |e verfasserin  |4 aut 
700 1 |a Su, Yu-Ting  |e verfasserin  |4 aut 
700 1 |a Zhang, Yong-Dong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g (2018) vom: 28. Sept.  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g year:2018  |g day:28  |g month:09 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2018.2872879  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2018  |b 28  |c 09