Multi-Domain & Multi-Task Learning for Human Action Recognition

Domain-invariant (view-invariant & modalityinvariant) feature representation is essential for human action recognition. Moreover, given a discriminative visual representation, it is critical to discover the latent correlations among multiple actions in order to facilitate action modeling. To add...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2018) vom: 28. Sept.
1. Verfasser: Liu, An-An (VerfasserIn)
Weitere Verfasser: Xu, Ning, Nie, Wei-Zhi, Su, Yu-Ting, Zhang, Yong-Dong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Domain-invariant (view-invariant & modalityinvariant) feature representation is essential for human action recognition. Moreover, given a discriminative visual representation, it is critical to discover the latent correlations among multiple actions in order to facilitate action modeling. To address these problems, we propose a multi-domain & multi-task learning (MDMTL) method to (1) extract domain-invariant information for multi-view and multi-modal action representation and (2) explore the relatedness among multiple action categories. Specifically, we present a sparse transfer learning-based method to co-embed multi-domain (multi-view & multi-modality) data into a single common space for discriminative feature learning. Additionally, visual feature learning is incorporated into the multitask learning framework, with the Frobenius-norm regularization term and the sparse constraint term, for joint task modeling and task relatedness-induced feature learning. To the best of our knowledge, MDMTL is the first supervised framework to jointly realize domain-invariant feature learning and task modeling for multi-domain action recognition. Experiments conducted on the INRIA Xmas Motion Acquisition Sequences (IXMAS) dataset, the MSR Daily Activity 3D (DailyActivity3D) dataset, and the Multi-modal & Multi-view & Interactive (M2I) dataset, which is the most recent and largest multi-view and multi-model action recognition dataset, demonstrate the superiority of MDMTL over the state-of-the-art approaches
Beschreibung:Date Revised 27.02.2024
published: Print-Electronic
Citation Status Publisher
ISSN:1941-0042
DOI:10.1109/TIP.2018.2872879