Segmentation of Laser Point Clouds in Urban Areas by a Modified Normalized Cut Method

Normalized Cut is a well-established divisive image segmentation method, which we adapt in this paper for the segmentation of laser point clouds in urban areas. Our focus is on polyhedral objects with planar surfaces. Due to its target function, Normalized Cut favours cuts with "short cut lines...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 41(2019), 12 vom: 15. Dez., Seite 3034-3047
1. Verfasser: Dutta, Avishek (VerfasserIn)
Weitere Verfasser: Engels, Johannes, Hahn, Michael
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM288593537
003 DE-627
005 20250224032037.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2018.2869744  |2 doi 
028 5 2 |a pubmed25n0961.xml 
035 |a (DE-627)NLM288593537 
035 |a (NLM)30222551 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Dutta, Avishek  |e verfasserin  |4 aut 
245 1 0 |a Segmentation of Laser Point Clouds in Urban Areas by a Modified Normalized Cut Method 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 04.03.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Normalized Cut is a well-established divisive image segmentation method, which we adapt in this paper for the segmentation of laser point clouds in urban areas. Our focus is on polyhedral objects with planar surfaces. Due to its target function, Normalized Cut favours cuts with "short cut lines" or "small cut surfaces", which is a drawback for our application. We therefore modify the target function, weighting the similarity measures with distance-dependent weights. We call the induced minimization problem "Distance-weighted Cut" (DWCut). The new target function leads to a generalized eigenvalue problem, which is slightly more complicated than the corresponding problem for the Normalized Cut; on the other hand, the new target function is easier to interpret and avoids some drawbacks of the Normalized Cut. We point out an efficient method for the numerical solution of the eigenvalue problem which is based on a Krylov subspace method. DWCut can be beneficially combined with an aggregation in order to reduce the computational effort and to avoid shortcomings due to insufficient plane parameters. We present examples for the successful application of the Distance-weighted Cut principle and evaluate its results by comparison with the results of corresponding manual segmentations 
650 4 |a Journal Article 
700 1 |a Engels, Johannes  |e verfasserin  |4 aut 
700 1 |a Hahn, Michael  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 41(2019), 12 vom: 15. Dez., Seite 3034-3047  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:41  |g year:2019  |g number:12  |g day:15  |g month:12  |g pages:3034-3047 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2018.2869744  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 41  |j 2019  |e 12  |b 15  |c 12  |h 3034-3047