Defect engineering by synchrotron radiation X-rays in CeO2 nanocrystals

This work reports an unconventional defect engineering approach using synchrotron-radiation-based X-rays on ceria nanocrystal catalysts of particle sizes 4.4-10.6 nm. The generation of a large number of oxygen-vacancy defects (OVDs), and therefore an effective reduction of cations, has been found in...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of synchrotron radiation. - 1994. - 25(2018), Pt 5 vom: 01. Sept., Seite 1395-1399
1. Verfasser: Wu, Tai Sing (VerfasserIn)
Weitere Verfasser: Syu, Leng You, Weng, Shih Chang, Jeng, Horng Tay, Chang, Shih Lin, Soo, Yun Liang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Journal of synchrotron radiation
Schlagworte:Journal Article DFT X-ray irradiation XANES defect engineering
LEADER 01000naa a22002652 4500
001 NLM288168399
003 DE-627
005 20231225055647.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1107/S1600577518008184  |2 doi 
028 5 2 |a pubmed24n0960.xml 
035 |a (DE-627)NLM288168399 
035 |a (NLM)30179178 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wu, Tai Sing  |e verfasserin  |4 aut 
245 1 0 |a Defect engineering by synchrotron radiation X-rays in CeO2 nanocrystals 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 06.09.2018 
500 |a Date Revised 06.09.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This work reports an unconventional defect engineering approach using synchrotron-radiation-based X-rays on ceria nanocrystal catalysts of particle sizes 4.4-10.6 nm. The generation of a large number of oxygen-vacancy defects (OVDs), and therefore an effective reduction of cations, has been found in CeO2 catalytic materials bombarded by high-intensity synchrotron X-ray beams of beam size 1.5 mm × 0.5 mm, photon energies of 5.5-7.8 keV and photon fluxes up to 1.53 × 1012 photons s-1. The experimentally observed cation reduction was theoretically explained by a first-principles formation-energy calculation for oxygen vacancy defects. The results clearly indicate that OVD formation is mainly a result of X-ray-excited core holes that give rise to valence holes through electron down conversion in the material. Thermal annealing and subvalent Y-doping were also employed to modulate the efficiency of oxygen escape, providing extra control on the X-ray-induced OVD generating process. Both the core-hole-dominated bond breaking and oxygen escape mechanisms play pivotal roles for efficient OVD formation. This X-ray irradiation approach, as an alternative defect engineering method, can be applied to a wide variety of nanostructured materials for physical-property modification 
650 4 |a Journal Article 
650 4 |a DFT 
650 4 |a X-ray irradiation 
650 4 |a XANES 
650 4 |a defect engineering 
700 1 |a Syu, Leng You  |e verfasserin  |4 aut 
700 1 |a Weng, Shih Chang  |e verfasserin  |4 aut 
700 1 |a Jeng, Horng Tay  |e verfasserin  |4 aut 
700 1 |a Chang, Shih Lin  |e verfasserin  |4 aut 
700 1 |a Soo, Yun Liang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of synchrotron radiation  |d 1994  |g 25(2018), Pt 5 vom: 01. Sept., Seite 1395-1399  |w (DE-627)NLM09824129X  |x 1600-5775  |7 nnns 
773 1 8 |g volume:25  |g year:2018  |g number:Pt 5  |g day:01  |g month:09  |g pages:1395-1399 
856 4 0 |u http://dx.doi.org/10.1107/S1600577518008184  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_40 
912 |a GBV_ILN_350 
912 |a GBV_ILN_2005 
951 |a AR 
952 |d 25  |j 2018  |e Pt 5  |b 01  |c 09  |h 1395-1399