Defect engineering by synchrotron radiation X-rays in CeO2 nanocrystals
This work reports an unconventional defect engineering approach using synchrotron-radiation-based X-rays on ceria nanocrystal catalysts of particle sizes 4.4-10.6 nm. The generation of a large number of oxygen-vacancy defects (OVDs), and therefore an effective reduction of cations, has been found in...
Veröffentlicht in: | Journal of synchrotron radiation. - 1994. - 25(2018), Pt 5 vom: 01. Sept., Seite 1395-1399 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2018
|
Zugriff auf das übergeordnete Werk: | Journal of synchrotron radiation |
Schlagworte: | Journal Article DFT X-ray irradiation XANES defect engineering |
Zusammenfassung: | This work reports an unconventional defect engineering approach using synchrotron-radiation-based X-rays on ceria nanocrystal catalysts of particle sizes 4.4-10.6 nm. The generation of a large number of oxygen-vacancy defects (OVDs), and therefore an effective reduction of cations, has been found in CeO2 catalytic materials bombarded by high-intensity synchrotron X-ray beams of beam size 1.5 mm × 0.5 mm, photon energies of 5.5-7.8 keV and photon fluxes up to 1.53 × 1012 photons s-1. The experimentally observed cation reduction was theoretically explained by a first-principles formation-energy calculation for oxygen vacancy defects. The results clearly indicate that OVD formation is mainly a result of X-ray-excited core holes that give rise to valence holes through electron down conversion in the material. Thermal annealing and subvalent Y-doping were also employed to modulate the efficiency of oxygen escape, providing extra control on the X-ray-induced OVD generating process. Both the core-hole-dominated bond breaking and oxygen escape mechanisms play pivotal roles for efficient OVD formation. This X-ray irradiation approach, as an alternative defect engineering method, can be applied to a wide variety of nanostructured materials for physical-property modification |
---|---|
Beschreibung: | Date Completed 06.09.2018 Date Revised 06.09.2018 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1600-5775 |
DOI: | 10.1107/S1600577518008184 |