COGL : Coefficient Graph Laplacians for Optimized JPEG Image Decoding

We address the problem of decoding joint photographic experts group (JPEG)-encoded images with less visual artifacts. We view the decoding task as an ill-posed inverse problem and find a regularized solution using a convex, graph Laplacian-regularized model. Since the resulting problem is non-smooth...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 28(2019), 1 vom: 01. Jan., Seite 343-355
1. Verfasser: Young, Sean I (VerfasserIn)
Weitere Verfasser: Naman, Aous T, Taubman, David
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM288142845
003 DE-627
005 20231225055613.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2018.2867943  |2 doi 
028 5 2 |a pubmed24n0960.xml 
035 |a (DE-627)NLM288142845 
035 |a (NLM)30176592 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Young, Sean I  |e verfasserin  |4 aut 
245 1 0 |a COGL  |b Coefficient Graph Laplacians for Optimized JPEG Image Decoding 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 24.09.2018 
500 |a Date Revised 24.09.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We address the problem of decoding joint photographic experts group (JPEG)-encoded images with less visual artifacts. We view the decoding task as an ill-posed inverse problem and find a regularized solution using a convex, graph Laplacian-regularized model. Since the resulting problem is non-smooth and entails non-local regularization, we use fast high-dimensional Gaussian filtering techniques with the proximal gradient descent method to solve our convex problem efficiently. Our patch-based "coefficient graph" is better suited than the traditional pixel-based ones for regularizing smooth non-stationary signals such as natural images and relates directly to classic non-local means de-noising of images. We also extend our graph along the temporal dimension to handle the decoding of M-JPEG-encoded video. Despite the minimalistic nature of our convex problem, it produces decoded images with similar quality to other more complex, state-of-the-art methods while being up to five times faster. We also expound on the relationship between our method and the classic ANCE method, reinterpreting ANCE from a graph-based regularization perspective 
650 4 |a Journal Article 
700 1 |a Naman, Aous T  |e verfasserin  |4 aut 
700 1 |a Taubman, David  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 28(2019), 1 vom: 01. Jan., Seite 343-355  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:28  |g year:2019  |g number:1  |g day:01  |g month:01  |g pages:343-355 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2018.2867943  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 28  |j 2019  |e 1  |b 01  |c 01  |h 343-355