COGL : Coefficient Graph Laplacians for Optimized JPEG Image Decoding
We address the problem of decoding joint photographic experts group (JPEG)-encoded images with less visual artifacts. We view the decoding task as an ill-posed inverse problem and find a regularized solution using a convex, graph Laplacian-regularized model. Since the resulting problem is non-smooth...
Veröffentlicht in: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 28(2019), 1 vom: 01. Jan., Seite 343-355 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2019
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society |
Schlagworte: | Journal Article |
Zusammenfassung: | We address the problem of decoding joint photographic experts group (JPEG)-encoded images with less visual artifacts. We view the decoding task as an ill-posed inverse problem and find a regularized solution using a convex, graph Laplacian-regularized model. Since the resulting problem is non-smooth and entails non-local regularization, we use fast high-dimensional Gaussian filtering techniques with the proximal gradient descent method to solve our convex problem efficiently. Our patch-based "coefficient graph" is better suited than the traditional pixel-based ones for regularizing smooth non-stationary signals such as natural images and relates directly to classic non-local means de-noising of images. We also extend our graph along the temporal dimension to handle the decoding of M-JPEG-encoded video. Despite the minimalistic nature of our convex problem, it produces decoded images with similar quality to other more complex, state-of-the-art methods while being up to five times faster. We also expound on the relationship between our method and the classic ANCE method, reinterpreting ANCE from a graph-based regularization perspective |
---|---|
Beschreibung: | Date Completed 24.09.2018 Date Revised 24.09.2018 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1941-0042 |
DOI: | 10.1109/TIP.2018.2867943 |