Multistate and On-Demand Smart Windows

© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 30(2018), 43 vom: 03. Okt., Seite e1803847
1. Verfasser: Kim, Hye-Na (VerfasserIn)
Weitere Verfasser: Ge, Dengteng, Lee, Elaine, Yang, Shu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article composite films on-demand silica particles smart windows wrinkles
LEADER 01000naa a22002652 4500
001 NLM288131304
003 DE-627
005 20231225055557.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.201803847  |2 doi 
028 5 2 |a pubmed24n0960.xml 
035 |a (DE-627)NLM288131304 
035 |a (NLM)30175418 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kim, Hye-Na  |e verfasserin  |4 aut 
245 1 0 |a Multistate and On-Demand Smart Windows 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 29.10.2018 
500 |a Date Revised 01.10.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 
520 |a Composite films consisting of wrinkles on top of the elastomeric poly(dimethylsiloxane) film and a thin layer of silica particles embedded at the bottom is prepared as on-demand mechanoresponsive smart windows. By carefully varying the wrinkle geometry, silica particle size, and stretching strain, different initial optical states and a large degree of optical transmittance change in the visible to near infrared range with a relatively small strain (as small as 10%) is achieved. The 10% pre-strain sample has shallow wrinkles with a low amplitude and shows moderate transmittance (60.5%) initially and the highest transmittance of 86.4% at 550 nm when stretched at the pre-strain level. Stretching beyond the pre-strain level leads to a drastic decrease of the transmittance at 550 nm, 39.7% and 70.8% with an additional 10% and 30% strain, respectively. The large drop of optical transmittance is the result of combined effects from the formation of secondary wrinkles and nanovoids generated around the particles. The 20% pre-strain sample has wrinkles with a moderate amplitude, showing 36.9% transmittance in the initial state, and the highest transmittance of 71.5% at 550 nm when stretched to the pre-strain level. Further stretching leads to increased opacity similar to that seen from the 10% pre-strain sample 
650 4 |a Journal Article 
650 4 |a composite films 
650 4 |a on-demand 
650 4 |a silica particles 
650 4 |a smart windows 
650 4 |a wrinkles 
700 1 |a Ge, Dengteng  |e verfasserin  |4 aut 
700 1 |a Lee, Elaine  |e verfasserin  |4 aut 
700 1 |a Yang, Shu  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 30(2018), 43 vom: 03. Okt., Seite e1803847  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:30  |g year:2018  |g number:43  |g day:03  |g month:10  |g pages:e1803847 
856 4 0 |u http://dx.doi.org/10.1002/adma.201803847  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2018  |e 43  |b 03  |c 10  |h e1803847