Multistate and On-Demand Smart Windows
© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 30(2018), 43 vom: 03. Okt., Seite e1803847 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2018
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article composite films on-demand silica particles smart windows wrinkles |
Zusammenfassung: | © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Composite films consisting of wrinkles on top of the elastomeric poly(dimethylsiloxane) film and a thin layer of silica particles embedded at the bottom is prepared as on-demand mechanoresponsive smart windows. By carefully varying the wrinkle geometry, silica particle size, and stretching strain, different initial optical states and a large degree of optical transmittance change in the visible to near infrared range with a relatively small strain (as small as 10%) is achieved. The 10% pre-strain sample has shallow wrinkles with a low amplitude and shows moderate transmittance (60.5%) initially and the highest transmittance of 86.4% at 550 nm when stretched at the pre-strain level. Stretching beyond the pre-strain level leads to a drastic decrease of the transmittance at 550 nm, 39.7% and 70.8% with an additional 10% and 30% strain, respectively. The large drop of optical transmittance is the result of combined effects from the formation of secondary wrinkles and nanovoids generated around the particles. The 20% pre-strain sample has wrinkles with a moderate amplitude, showing 36.9% transmittance in the initial state, and the highest transmittance of 71.5% at 550 nm when stretched to the pre-strain level. Further stretching leads to increased opacity similar to that seen from the 10% pre-strain sample |
---|---|
Beschreibung: | Date Completed 29.10.2018 Date Revised 01.10.2020 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.201803847 |