Multistate and On-Demand Smart Windows

© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 30(2018), 43 vom: 03. Okt., Seite e1803847
1. Verfasser: Kim, Hye-Na (VerfasserIn)
Weitere Verfasser: Ge, Dengteng, Lee, Elaine, Yang, Shu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article composite films on-demand silica particles smart windows wrinkles
Beschreibung
Zusammenfassung:© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Composite films consisting of wrinkles on top of the elastomeric poly(dimethylsiloxane) film and a thin layer of silica particles embedded at the bottom is prepared as on-demand mechanoresponsive smart windows. By carefully varying the wrinkle geometry, silica particle size, and stretching strain, different initial optical states and a large degree of optical transmittance change in the visible to near infrared range with a relatively small strain (as small as 10%) is achieved. The 10% pre-strain sample has shallow wrinkles with a low amplitude and shows moderate transmittance (60.5%) initially and the highest transmittance of 86.4% at 550 nm when stretched at the pre-strain level. Stretching beyond the pre-strain level leads to a drastic decrease of the transmittance at 550 nm, 39.7% and 70.8% with an additional 10% and 30% strain, respectively. The large drop of optical transmittance is the result of combined effects from the formation of secondary wrinkles and nanovoids generated around the particles. The 20% pre-strain sample has wrinkles with a moderate amplitude, showing 36.9% transmittance in the initial state, and the highest transmittance of 71.5% at 550 nm when stretched to the pre-strain level. Further stretching leads to increased opacity similar to that seen from the 10% pre-strain sample
Beschreibung:Date Completed 29.10.2018
Date Revised 01.10.2020
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.201803847