|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM287794113 |
003 |
DE-627 |
005 |
20240229161929.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2018 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.201804084
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1308.xml
|
035 |
|
|
|a (DE-627)NLM287794113
|
035 |
|
|
|a (NLM)30141197
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Chen, Wei
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Atomic Interlamellar Ion Path in High Sulfur Content Lithium-Montmorillonite Host Enables High-Rate and Stable Lithium-Sulfur Battery
|
264 |
|
1 |
|c 2018
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 27.02.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status Publisher
|
520 |
|
|
|a © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
|
520 |
|
|
|a Fast lithium ion transport with a high current density is critical for thick sulfur cathodes, stemming mainly from the difficulties in creating effective lithium ion pathways in high sulfur content electrodes. To develop a high-rate cathode for lithium-sulfur (Li-S) batteries, extenuation of the lithium ion diffusion barrier in thick electrodes is potentially straightforward. Here, a phyllosilicate material with a large interlamellar distance is demonstrated in high-rate cathodes as high sulfur loading. The interlayer space (≈1.396 nm) incorporated into a low lithium ion diffusion barrier (0.155 eV) significantly facilitates lithium ion diffusion within the entire sulfur cathode, and gives rise to remarkable nearly sulfur loading-independent cell performances. When combined with 80% sulfur contents, the electrodes achieve a high capacity of 865 mAh g-1 at 1 mA cm-2 and a retention of 345 mAh g-1 at a high discharging/charging rate of 15 mA cm-2 , with a sulfur loading up to 4 mg. This strategy represents a major advance in high-rate Li-S batteries via the construction of fast ions transfer paths toward real-life applications, and contributes to the research community for the fundamental mechanism study of loading-independent electrode systems
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a high sulfur content
|
650 |
|
4 |
|a lithium ion transport path
|
650 |
|
4 |
|a lithium-montmorillonite
|
650 |
|
4 |
|a lithium-sulfur batteries
|
700 |
1 |
|
|a Lei, Tianyu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lv, Weiqiang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hu, Yin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yan, Yichao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Jiao, Yu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a He, Weidong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Zhenghan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yan, Chenglin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xiong, Jie
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g (2018) vom: 23. Aug., Seite e1804084
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g year:2018
|g day:23
|g month:08
|g pages:e1804084
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.201804084
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|j 2018
|b 23
|c 08
|h e1804084
|