Atomic Interlamellar Ion Path in High Sulfur Content Lithium-Montmorillonite Host Enables High-Rate and Stable Lithium-Sulfur Battery

© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - (2018) vom: 23. Aug., Seite e1804084
1. Verfasser: Chen, Wei (VerfasserIn)
Weitere Verfasser: Lei, Tianyu, Lv, Weiqiang, Hu, Yin, Yan, Yichao, Jiao, Yu, He, Weidong, Li, Zhenghan, Yan, Chenglin, Xiong, Jie
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article high sulfur content lithium ion transport path lithium-montmorillonite lithium-sulfur batteries
Beschreibung
Zusammenfassung:© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fast lithium ion transport with a high current density is critical for thick sulfur cathodes, stemming mainly from the difficulties in creating effective lithium ion pathways in high sulfur content electrodes. To develop a high-rate cathode for lithium-sulfur (Li-S) batteries, extenuation of the lithium ion diffusion barrier in thick electrodes is potentially straightforward. Here, a phyllosilicate material with a large interlamellar distance is demonstrated in high-rate cathodes as high sulfur loading. The interlayer space (≈1.396 nm) incorporated into a low lithium ion diffusion barrier (0.155 eV) significantly facilitates lithium ion diffusion within the entire sulfur cathode, and gives rise to remarkable nearly sulfur loading-independent cell performances. When combined with 80% sulfur contents, the electrodes achieve a high capacity of 865 mAh g-1 at 1 mA cm-2 and a retention of 345 mAh g-1 at a high discharging/charging rate of 15 mA cm-2 , with a sulfur loading up to 4 mg. This strategy represents a major advance in high-rate Li-S batteries via the construction of fast ions transfer paths toward real-life applications, and contributes to the research community for the fundamental mechanism study of loading-independent electrode systems
Beschreibung:Date Revised 27.02.2024
published: Print-Electronic
Citation Status Publisher
ISSN:1521-4095
DOI:10.1002/adma.201804084