Genetic map-guided genome assembly reveals a virulence-governing minichromosome in the lentil anthracnose pathogen Colletotrichum lentis

© 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

Bibliographische Detailangaben
Veröffentlicht in:The New phytologist. - 1979. - 221(2019), 1 vom: 04. Jan., Seite 431-445
1. Verfasser: Bhadauria, Vijai (VerfasserIn)
Weitere Verfasser: MacLachlan, Ron, Pozniak, Curtis, Cohen-Skalie, Aurelie, Li, Li, Halliday, Jerlene, Banniza, Sabine
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:The New phytologist
Schlagworte:Journal Article Research Support, Non-U.S. Gov't conditionally dispensable chromosomes disease resistance effectors genomics genotyping-by-whole-genome shotgun sequencing legumes pathogens
Beschreibung
Zusammenfassung:© 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
Colletotrichum lentis causes anthracnose, which is a serious disease on lentil and can account for up to 70% crop loss. Two pathogenic races, 0 and 1, have been described in the C. lentis population from lentil. To unravel the genetic control of virulence, an isolate of the virulent race 0 was sequenced at 1481-fold genomic coverage. The 56.10-Mb genome assembly consists of 50 scaffolds with N50 scaffold length of 4.89 Mb. A total of 11 436 protein-coding gene models was predicted in the genome with 237 coding candidate effectors, 43 secondary metabolite biosynthetic enzymes and 229 carbohydrate-active enzymes (CAZymes), suggesting a contraction of the virulence gene repertoire in C. lentis. Scaffolds were assigned to 10 core and two minichromosomes using a population (race 0 × race 1, n = 94 progeny isolates) sequencing-based, high-density (14 312 single nucleotide polymorphisms) genetic map. Composite interval mapping revealed a single quantitative trait locus (QTL), qClVIR-11, located on minichromosome 11, explaining 85% of the variability in virulence of the C. lentis population. The QTL covers a physical distance of 0.84 Mb with 98 genes, including seven candidate effector and two secondary metabolite genes. Taken together, the study provides genetic and physical evidence for the existence of a minichromosome controlling the C. lentis virulence on lentil
Beschreibung:Date Completed 21.01.2020
Date Revised 30.09.2020
published: Print-Electronic
Citation Status MEDLINE
ISSN:1469-8137
DOI:10.1111/nph.15369