Effects of heat treatment on enzyme activity and expression of key genes controlling cell wall remodeling in strawberry fruit

Copyright © 2018 Elsevier Masson SAS. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Plant physiology and biochemistry : PPB. - 1991. - 130(2018) vom: 15. Sept., Seite 334-344
1. Verfasser: Langer, Silvia E (VerfasserIn)
Weitere Verfasser: Oviedo, Natalia C, Marina, María, Burgos, José Luis, Martínez, Gustavo A, Civello, Pedro M, Villarreal, Natalia M
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Plant physiology and biochemistry : PPB
Schlagworte:Journal Article Fruit softening Gene expression Heat treatment Strawberry cell wall metabolism Anthocyanins Phenols Polysaccharides Sugars Carboxylic Ester Hydrolases mehr... EC 3.1.1.- pectinesterase EC 3.1.1.11 Glycoside Hydrolases EC 3.2.1.- Xylosidases Polygalacturonase EC 3.2.1.15 beta-Galactosidase EC 3.2.1.23 exo-1,4-beta-D-xylosidase EC 3.2.1.37 alpha-N-arabinofuranosidase EC 3.2.1.55
LEADER 01000naa a22002652 4500
001 NLM286937115
003 DE-627
005 20231225052857.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.plaphy.2018.07.015  |2 doi 
028 5 2 |a pubmed24n0956.xml 
035 |a (DE-627)NLM286937115 
035 |a (NLM)30053739 
035 |a (PII)S0981-9428(18)30315-2 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Langer, Silvia E  |e verfasserin  |4 aut 
245 1 0 |a Effects of heat treatment on enzyme activity and expression of key genes controlling cell wall remodeling in strawberry fruit 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 22.10.2018 
500 |a Date Revised 30.09.2020 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Copyright © 2018 Elsevier Masson SAS. All rights reserved. 
520 |a Modification of cell wall polymers composition and structure is one of the main factors contributing to textural changes during strawberry (Fragaria x ananassa, Duch.) fruit ripening and storage. The present study aimed to provide new data to understand the molecular basis underlying the postharvest preservation of strawberry cell wall structure by heat treatment. Ripe fruit (cv. Aroma) were heat-treated in air oven (3 h at 45 °C) and then stored 8 days at 4 °C + 2 days at 20 °C, while maintaining a set of non-treated fruit as controls. The effect of heat stress on the expression pattern of key genes controlling strawberry cell wall metabolism, as well as some enzymatic activities was investigated. The expression of genes proved to be relevant for pectin disassembly and fruit softening process (FaPG1, FaPLB, FaPLC, FaAra1, FaβGal4) were down-regulated by heat treatment, while the expression of genes being involved in the reinforcement of cell wall as pectin-methylesterase (FaPME1) and xyloglucan endo-transglycosilase (FaXTH1) was up-regulated. Total cell wall amount as well as cellulose, hemicellulose, neutral sugars and ionically and covalently bounded pectins were higher in heat-stressed fruit compared to controls, which might be related to higher firmness values. Interestingly, heat stress was able to arrest the in vitro cell wall swelling process during postharvest fruit ripening, suggesting a preservation of cell wall structure, which was in agreement with a lower growth rate of Botrytis cinerea on plates containing cell walls from heat-stressed fruit when compared to controls 
650 4 |a Journal Article 
650 4 |a Fruit softening 
650 4 |a Gene expression 
650 4 |a Heat treatment 
650 4 |a Strawberry cell wall metabolism 
650 7 |a Anthocyanins  |2 NLM 
650 7 |a Phenols  |2 NLM 
650 7 |a Polysaccharides  |2 NLM 
650 7 |a Sugars  |2 NLM 
650 7 |a Carboxylic Ester Hydrolases  |2 NLM 
650 7 |a EC 3.1.1.-  |2 NLM 
650 7 |a pectinesterase  |2 NLM 
650 7 |a EC 3.1.1.11  |2 NLM 
650 7 |a Glycoside Hydrolases  |2 NLM 
650 7 |a EC 3.2.1.-  |2 NLM 
650 7 |a Xylosidases  |2 NLM 
650 7 |a EC 3.2.1.-  |2 NLM 
650 7 |a Polygalacturonase  |2 NLM 
650 7 |a EC 3.2.1.15  |2 NLM 
650 7 |a beta-Galactosidase  |2 NLM 
650 7 |a EC 3.2.1.23  |2 NLM 
650 7 |a exo-1,4-beta-D-xylosidase  |2 NLM 
650 7 |a EC 3.2.1.37  |2 NLM 
650 7 |a alpha-N-arabinofuranosidase  |2 NLM 
650 7 |a EC 3.2.1.55  |2 NLM 
700 1 |a Oviedo, Natalia C  |e verfasserin  |4 aut 
700 1 |a Marina, María  |e verfasserin  |4 aut 
700 1 |a Burgos, José Luis  |e verfasserin  |4 aut 
700 1 |a Martínez, Gustavo A  |e verfasserin  |4 aut 
700 1 |a Civello, Pedro M  |e verfasserin  |4 aut 
700 1 |a Villarreal, Natalia M  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Plant physiology and biochemistry : PPB  |d 1991  |g 130(2018) vom: 15. Sept., Seite 334-344  |w (DE-627)NLM098178261  |x 1873-2690  |7 nnns 
773 1 8 |g volume:130  |g year:2018  |g day:15  |g month:09  |g pages:334-344 
856 4 0 |u http://dx.doi.org/10.1016/j.plaphy.2018.07.015  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 130  |j 2018  |b 15  |c 09  |h 334-344