Large-Scale Low-Rank Matrix Learning with Nonconvex Regularizers
Low-rank modeling has many important applications in computer vision and machine learning. While the matrix rank is often approximated by the convex nuclear norm, the use of nonconvex low-rank regularizers has demonstrated better empirical performance. However, the resulting optimization problem is...
Publié dans: | IEEE transactions on pattern analysis and machine intelligence. - 1979. - 41(2019), 11 vom: 24. Nov., Seite 2628-2643 |
---|---|
Auteur principal: | |
Autres auteurs: | , , |
Format: | Article en ligne |
Langue: | English |
Publié: |
2019
|
Accès à la collection: | IEEE transactions on pattern analysis and machine intelligence |
Sujets: | Journal Article |
Accès en ligne |
Volltext |