Large-Scale Low-Rank Matrix Learning with Nonconvex Regularizers

Low-rank modeling has many important applications in computer vision and machine learning. While the matrix rank is often approximated by the convex nuclear norm, the use of nonconvex low-rank regularizers has demonstrated better empirical performance. However, the resulting optimization problem is...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 41(2019), 11 vom: 24. Nov., Seite 2628-2643
Auteur principal: Yao, Quanming (Auteur)
Autres auteurs: Kwok, James T, Wang, Taifeng, Liu, Tie-Yan
Format: Article en ligne
Langue:English
Publié: 2019
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article