Large-Scale Low-Rank Matrix Learning with Nonconvex Regularizers
Low-rank modeling has many important applications in computer vision and machine learning. While the matrix rank is often approximated by the convex nuclear norm, the use of nonconvex low-rank regularizers has demonstrated better empirical performance. However, the resulting optimization problem is...
| Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence. - 1979. - 41(2019), 11 vom: 24. Nov., Seite 2628-2643 |
|---|---|
| 1. Verfasser: | |
| Weitere Verfasser: | , , |
| Format: | Online-Aufsatz |
| Sprache: | English |
| Veröffentlicht: |
2019
|
| Zugriff auf das übergeordnete Werk: | IEEE transactions on pattern analysis and machine intelligence |
| Schlagworte: | Journal Article |
| Online verfügbar |
Volltext |