Large-Scale Low-Rank Matrix Learning with Nonconvex Regularizers

Low-rank modeling has many important applications in computer vision and machine learning. While the matrix rank is often approximated by the convex nuclear norm, the use of nonconvex low-rank regularizers has demonstrated better empirical performance. However, the resulting optimization problem is...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 41(2019), 11 vom: 24. Nov., Seite 2628-2643
1. Verfasser: Yao, Quanming (VerfasserIn)
Weitere Verfasser: Kwok, James T, Wang, Taifeng, Liu, Tie-Yan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article