|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM286798581 |
003 |
DE-627 |
005 |
20240229161857.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2018 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.201802503
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1308.xml
|
035 |
|
|
|a (DE-627)NLM286798581
|
035 |
|
|
|a (NLM)30039537
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Sanli, Umut T
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a 3D Nanoprinted Plastic Kinoform X-Ray Optics
|
264 |
|
1 |
|c 2018
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 27.02.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status Publisher
|
520 |
|
|
|a © 2018 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
|
520 |
|
|
|a High-performance focusing of X-rays requires the realization of very challenging 3D geometries with nanoscale features, sub-millimeter-scale apertures, and high aspect ratios. A particularly difficult structure is the profile of an ideal zone plate called a kinoform, which is manufactured in nonideal approximated patterns, nonetheless requires complicated multistep fabrication processes. Here, 3D fabrication of high-performance kinoforms with unprecedented aspect ratios out of low-loss plastics using femtosecond two-photon 3D nanoprinting is presented. A thorough characterization of the 3D-printed kinoforms using direct soft X-ray imaging and ptychography demonstrates superior performance with an efficiency reaching up to 20%. An extended concept is proposed for on-chip integration of various X-ray optics toward high-fidelity control of X-ray wavefronts and ultimate efficiencies even for harder X-rays. Initial results establish new, advanced focusing optics for both synchrotron and laboratory sources for a large variety of X-ray techniques and applications ranging from materials science to medicine
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a 3D nanoprinting
|
650 |
|
4 |
|a X-ray microscopy
|
650 |
|
4 |
|a kinoforms
|
650 |
|
4 |
|a ptychography
|
650 |
|
4 |
|a soft X-ray optics
|
700 |
1 |
|
|a Ceylan, Hakan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Bykova, Iuliia
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Weigand, Markus
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Sitti, Metin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Schütz, Gisela
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Keskinbora, Kahraman
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g (2018) vom: 23. Juli, Seite e1802503
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g year:2018
|g day:23
|g month:07
|g pages:e1802503
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.201802503
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|j 2018
|b 23
|c 07
|h e1802503
|