Continuous Control Monte Carlo Tree Search Informed by Multiple Experts

Efficient algorithms for 3D character control in continuous control setting remain an open problem in spite of the remarkable recent advances in the field. We present a sampling-based model-predictive controller that comes in the form of a Monte Carlo tree search (MCTS). The tree search utilizes inf...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 25(2019), 8 vom: 24. Aug., Seite 2540-2553
1. Verfasser: Rajamaki, Joose (VerfasserIn)
Weitere Verfasser: Hamalainen, Perttu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM28637157X
003 DE-627
005 20231225051543.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2018.2849386  |2 doi 
028 5 2 |a pubmed24n0954.xml 
035 |a (DE-627)NLM28637157X 
035 |a (NLM)29994613 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Rajamaki, Joose  |e verfasserin  |4 aut 
245 1 0 |a Continuous Control Monte Carlo Tree Search Informed by Multiple Experts 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 21.08.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Efficient algorithms for 3D character control in continuous control setting remain an open problem in spite of the remarkable recent advances in the field. We present a sampling-based model-predictive controller that comes in the form of a Monte Carlo tree search (MCTS). The tree search utilizes information from multiple sources including two machine learning models. This allows rapid development of complex skills such as 3D humanoid locomotion with less than a million simulation steps, in less than a minute of computing on a modest personal computer. We demonstrate locomotion of 3D characters with varying topologies under disturbances such as heavy projectile hits and abruptly changing target direction. In this paper we also present a new way to combine information from the various sources such that minimal amount of information is lost. We furthermore extend the neural network, involved in the algorithm, to represent stochastic policies. Our approach yields a robust control algorithm that is easy to use. While learning, the algorithm runs in near real-time, and after learning the sampling budget can be reduced for real-time operation 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Hamalainen, Perttu  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 25(2019), 8 vom: 24. Aug., Seite 2540-2553  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:25  |g year:2019  |g number:8  |g day:24  |g month:08  |g pages:2540-2553 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2018.2849386  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 25  |j 2019  |e 8  |b 24  |c 08  |h 2540-2553