Semi-Supervised Discriminative Classification Robust to Sample-Outliers and Feature-Noises

Discriminative methods commonly produce models with relatively good generalization abilities. However, this advantage is challenged in real-world applications (e.g., medical image analysis problems), in which there often exist outlier data points (sample-outliers) and noises in the predictor values...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 41(2019), 2 vom: 18. Feb., Seite 515-522
1. Verfasser: Adeli, Ehsan (VerfasserIn)
Weitere Verfasser: Thung, Kim-Han, An, Le, Wu, Guorong, Shi, Feng, Wang, Tao, Shen, Dinggang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, N.I.H., Extramural
LEADER 01000naa a22002652 4500
001 NLM286371049
003 DE-627
005 20231225051542.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2018.2794470  |2 doi 
028 5 2 |a pubmed24n0954.xml 
035 |a (DE-627)NLM286371049 
035 |a (NLM)29994560 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Adeli, Ehsan  |e verfasserin  |4 aut 
245 1 0 |a Semi-Supervised Discriminative Classification Robust to Sample-Outliers and Feature-Noises 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 07.02.2020 
500 |a Date Revised 26.09.2023 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Discriminative methods commonly produce models with relatively good generalization abilities. However, this advantage is challenged in real-world applications (e.g., medical image analysis problems), in which there often exist outlier data points (sample-outliers) and noises in the predictor values (feature-noises). Methods robust to both types of these deviations are somewhat overlooked in the literature. We further argue that denoising can be more effective, if we learn the model using all the available labeled and unlabeled samples, as the intrinsic geometry of the sample manifold can be better constructed using more data points. In this paper, we propose a semi-supervised robust discriminative classification method based on the least-squares formulation of linear discriminant analysis to detect sample-outliers and feature-noises simultaneously, using both labeled training and unlabeled testing data. We conduct several experiments on a synthetic, some benchmark semi-supervised learning, and two brain neurodegenerative disease diagnosis datasets (for Parkinson's and Alzheimer's diseases). Specifically for the application of neurodegenerative diseases diagnosis, incorporating robust machine learning methods can be of great benefit, due to the noisy nature of neuroimaging data. Our results show that our method outperforms the baseline and several state-of-the-art methods, in terms of both accuracy and the area under the ROC curve 
650 4 |a Journal Article 
650 4 |a Research Support, N.I.H., Extramural 
700 1 |a Thung, Kim-Han  |e verfasserin  |4 aut 
700 1 |a An, Le  |e verfasserin  |4 aut 
700 1 |a Wu, Guorong  |e verfasserin  |4 aut 
700 1 |a Shi, Feng  |e verfasserin  |4 aut 
700 1 |a Wang, Tao  |e verfasserin  |4 aut 
700 1 |a Shen, Dinggang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 41(2019), 2 vom: 18. Feb., Seite 515-522  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:41  |g year:2019  |g number:2  |g day:18  |g month:02  |g pages:515-522 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2018.2794470  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 41  |j 2019  |e 2  |b 18  |c 02  |h 515-522