Semi-Supervised Discriminative Classification Robust to Sample-Outliers and Feature-Noises

Discriminative methods commonly produce models with relatively good generalization abilities. However, this advantage is challenged in real-world applications (e.g., medical image analysis problems), in which there often exist outlier data points (sample-outliers) and noises in the predictor values...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 41(2019), 2 vom: 18. Feb., Seite 515-522
1. Verfasser: Adeli, Ehsan (VerfasserIn)
Weitere Verfasser: Thung, Kim-Han, An, Le, Wu, Guorong, Shi, Feng, Wang, Tao, Shen, Dinggang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, N.I.H., Extramural