A Sampling Approach to Generating Closely Interacting 3D Pose-Pairs from 2D Annotations

We introduce a data-driven method to generate a large number of plausible, closely interacting 3D human pose-pairs, for a given motion category, e.g., wrestling or salsa dance. With much difficulty in acquiring close interactions using 3D sensors, our approach utilizes abundant existing video data w...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 25(2019), 6 vom: 30. Juni, Seite 2217-2227
1. Verfasser: Yin, Kangxue (VerfasserIn)
Weitere Verfasser: Huang, Hui, Ho, Edmond S L, Wang, Hao, Komura, Taku, Cohen-Or, Daniel, Zhang, Hao
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM286365928
003 DE-627
005 20231225051536.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2018.2832097  |2 doi 
028 5 2 |a pubmed24n0954.xml 
035 |a (DE-627)NLM286365928 
035 |a (NLM)29994049 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yin, Kangxue  |e verfasserin  |4 aut 
245 1 2 |a A Sampling Approach to Generating Closely Interacting 3D Pose-Pairs from 2D Annotations 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We introduce a data-driven method to generate a large number of plausible, closely interacting 3D human pose-pairs, for a given motion category, e.g., wrestling or salsa dance. With much difficulty in acquiring close interactions using 3D sensors, our approach utilizes abundant existing video data which cover many human activities. Instead of treating the data generation problem as one of reconstruction, either through 3D acquisition or direct 2D-to-3D data lifting from video annotations, we present a solution based on Markov Chain Monte Carlo (MCMC) sampling. Given a motion category and a set of video frames depicting the motion with the 2D pose-pair in each frame annotated, we start the sampling with one or few seed 3D pose-pairs which are manually created based on the target motion category. The initial set is then augmented by MCMC sampling around the seeds, via the Metropolis-Hastings algorithm and guided by a probability density function (PDF) that is defined by two terms to bias the sampling towards 3D pose-pairs that are physically valid and plausible for the motion category. With a focus on efficient sampling over the space of close interactions, rather than pose spaces, we develop a novel representation called interaction coordinates (IC) to encode both poses and their interactions in an integrated manner. Plausibility of a 3D pose-pair is then defined based on the IC and with respect to the annotated 2D pose-pairs from video. We show that our sampling-based approach is able to efficiently synthesize a large volume of plausible, closely interacting 3D pose-pairs which provide a good coverage of the input 2D pose-pairs 
650 4 |a Journal Article 
700 1 |a Huang, Hui  |e verfasserin  |4 aut 
700 1 |a Ho, Edmond S L  |e verfasserin  |4 aut 
700 1 |a Wang, Hao  |e verfasserin  |4 aut 
700 1 |a Komura, Taku  |e verfasserin  |4 aut 
700 1 |a Cohen-Or, Daniel  |e verfasserin  |4 aut 
700 1 |a Zhang, Hao  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 25(2019), 6 vom: 30. Juni, Seite 2217-2227  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:25  |g year:2019  |g number:6  |g day:30  |g month:06  |g pages:2217-2227 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2018.2832097  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 25  |j 2019  |e 6  |b 30  |c 06  |h 2217-2227