Multi-Task Structure-Aware Context Modeling for Robust Keypoint-Based Object Tracking

In the fields of computer vision and graphics, keypoint-based object tracking is a fundamental and challenging problem, which is typically formulated in a spatio-temporal context modeling framework. However, many existing keypoint trackers are incapable of effectively modeling and balancing the foll...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 41(2019), 4 vom: 09. Apr., Seite 915-927
1. Verfasser: Li, Xi (VerfasserIn)
Weitere Verfasser: Zhao, Liming, Ji, Wei, Wu, Yiming, Wu, Fei, Yang, Ming-Hsuan, Tao, Dacheng, Reid, Ian
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM286363100
003 DE-627
005 20250223192056.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2018.2818132  |2 doi 
028 5 2 |a pubmed25n0954.xml 
035 |a (DE-627)NLM286363100 
035 |a (NLM)29993768 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Xi  |e verfasserin  |4 aut 
245 1 0 |a Multi-Task Structure-Aware Context Modeling for Robust Keypoint-Based Object Tracking 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In the fields of computer vision and graphics, keypoint-based object tracking is a fundamental and challenging problem, which is typically formulated in a spatio-temporal context modeling framework. However, many existing keypoint trackers are incapable of effectively modeling and balancing the following three aspects in a simultaneous manner: temporal model coherence across frames, spatial model consistency within frames, and discriminative feature construction. To address this problem, we propose a robust keypoint tracker based on spatio-temporal multi-task structured output optimization driven by discriminative metric learning. Consequently, temporal model coherence is characterized by multi-task structured keypoint model learning over several adjacent frames; spatial model consistency is modeled by solving a geometric verification based structured learning problem; discriminative feature construction is enabled by metric learning to ensure the intra-class compactness and inter-class separability. To achieve the goal of effective object tracking, we jointly optimize the above three modules in a spatio-temporal multi-task learning scheme. Furthermore, we incorporate this joint learning scheme into both single-object and multi-object tracking scenarios, resulting in robust tracking results. Experiments over several challenging datasets have justified the effectiveness of our single-object and multi-object trackers against the state-of-the-art 
650 4 |a Journal Article 
700 1 |a Zhao, Liming  |e verfasserin  |4 aut 
700 1 |a Ji, Wei  |e verfasserin  |4 aut 
700 1 |a Wu, Yiming  |e verfasserin  |4 aut 
700 1 |a Wu, Fei  |e verfasserin  |4 aut 
700 1 |a Yang, Ming-Hsuan  |e verfasserin  |4 aut 
700 1 |a Tao, Dacheng  |e verfasserin  |4 aut 
700 1 |a Reid, Ian  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 41(2019), 4 vom: 09. Apr., Seite 915-927  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:41  |g year:2019  |g number:4  |g day:09  |g month:04  |g pages:915-927 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2018.2818132  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 41  |j 2019  |e 4  |b 09  |c 04  |h 915-927