Multi-Task Structure-Aware Context Modeling for Robust Keypoint-Based Object Tracking

In the fields of computer vision and graphics, keypoint-based object tracking is a fundamental and challenging problem, which is typically formulated in a spatio-temporal context modeling framework. However, many existing keypoint trackers are incapable of effectively modeling and balancing the foll...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 41(2019), 4 vom: 09. Apr., Seite 915-927
1. Verfasser: Li, Xi (VerfasserIn)
Weitere Verfasser: Zhao, Liming, Ji, Wei, Wu, Yiming, Wu, Fei, Yang, Ming-Hsuan, Tao, Dacheng, Reid, Ian
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:In the fields of computer vision and graphics, keypoint-based object tracking is a fundamental and challenging problem, which is typically formulated in a spatio-temporal context modeling framework. However, many existing keypoint trackers are incapable of effectively modeling and balancing the following three aspects in a simultaneous manner: temporal model coherence across frames, spatial model consistency within frames, and discriminative feature construction. To address this problem, we propose a robust keypoint tracker based on spatio-temporal multi-task structured output optimization driven by discriminative metric learning. Consequently, temporal model coherence is characterized by multi-task structured keypoint model learning over several adjacent frames; spatial model consistency is modeled by solving a geometric verification based structured learning problem; discriminative feature construction is enabled by metric learning to ensure the intra-class compactness and inter-class separability. To achieve the goal of effective object tracking, we jointly optimize the above three modules in a spatio-temporal multi-task learning scheme. Furthermore, we incorporate this joint learning scheme into both single-object and multi-object tracking scenarios, resulting in robust tracking results. Experiments over several challenging datasets have justified the effectiveness of our single-object and multi-object trackers against the state-of-the-art
Beschreibung:Date Revised 20.11.2019
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1939-3539
DOI:10.1109/TPAMI.2018.2818132