On the Reconstruction of Face Images from Deep Face Templates

State-of-the-art face recognition systems are based on deep (convolutional) neural networks. Therefore, it is imperative to determine to what extent face templates derived from deep networks can be inverted to obtain the original face image. In this paper, we study the vulnerabilities of a state-of-...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 41(2019), 5 vom: 11. Mai, Seite 1188-1202
1. Verfasser: Mai, Guangcan (VerfasserIn)
Weitere Verfasser: Cao, Kai, Yuen, Pong C, Jain, Anil K
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM286359790
003 DE-627
005 20231225051528.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2018.2827389  |2 doi 
028 5 2 |a pubmed24n0954.xml 
035 |a (DE-627)NLM286359790 
035 |a (NLM)29993435 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Mai, Guangcan  |e verfasserin  |4 aut 
245 1 0 |a On the Reconstruction of Face Images from Deep Face Templates 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 27.01.2020 
500 |a Date Revised 27.01.2020 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a State-of-the-art face recognition systems are based on deep (convolutional) neural networks. Therefore, it is imperative to determine to what extent face templates derived from deep networks can be inverted to obtain the original face image. In this paper, we study the vulnerabilities of a state-of-the-art face recognition system based on template reconstruction attack. We propose a neighborly de-convolutional neural network (NbNet) to reconstruct face images from their deep templates. In our experiments, we assumed that no knowledge about the target subject and the deep network are available. To train the NbNet reconstruction models, we augmented two benchmark face datasets (VGG-Face and Multi-PIE) with a large collection of images synthesized using a face generator. The proposed reconstruction was evaluated using type-I (comparing the reconstructed images against the original face images used to generate the deep template) and type-II (comparing the reconstructed images against a different face image of the same subject) attacks. Given the images reconstructed from NbNets, we show that for verification, we achieve TAR of 95.20 percent (58.05 percent) on LFW under type-I (type-II) attacks FAR of 0.1 percent. Besides, 96.58 percent (92.84 percent) of the images reconstructed from templates of partition fa (fb) can be identified from partition fa in color FERET. Our study demonstrates the need to secure deep templates in face recognition systems 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Cao, Kai  |e verfasserin  |4 aut 
700 1 |a Yuen, Pong C  |e verfasserin  |4 aut 
700 1 |a Jain, Anil K  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 41(2019), 5 vom: 11. Mai, Seite 1188-1202  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:41  |g year:2019  |g number:5  |g day:11  |g month:05  |g pages:1188-1202 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2018.2827389  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 41  |j 2019  |e 5  |b 11  |c 05  |h 1188-1202