On the Reconstruction of Face Images from Deep Face Templates

State-of-the-art face recognition systems are based on deep (convolutional) neural networks. Therefore, it is imperative to determine to what extent face templates derived from deep networks can be inverted to obtain the original face image. In this paper, we study the vulnerabilities of a state-of-...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 41(2019), 5 vom: 11. Mai, Seite 1188-1202
1. Verfasser: Mai, Guangcan (VerfasserIn)
Weitere Verfasser: Cao, Kai, Yuen, Pong C, Jain, Anil K
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:State-of-the-art face recognition systems are based on deep (convolutional) neural networks. Therefore, it is imperative to determine to what extent face templates derived from deep networks can be inverted to obtain the original face image. In this paper, we study the vulnerabilities of a state-of-the-art face recognition system based on template reconstruction attack. We propose a neighborly de-convolutional neural network (NbNet) to reconstruct face images from their deep templates. In our experiments, we assumed that no knowledge about the target subject and the deep network are available. To train the NbNet reconstruction models, we augmented two benchmark face datasets (VGG-Face and Multi-PIE) with a large collection of images synthesized using a face generator. The proposed reconstruction was evaluated using type-I (comparing the reconstructed images against the original face images used to generate the deep template) and type-II (comparing the reconstructed images against a different face image of the same subject) attacks. Given the images reconstructed from NbNets, we show that for verification, we achieve TAR of 95.20 percent (58.05 percent) on LFW under type-I (type-II) attacks FAR of 0.1 percent. Besides, 96.58 percent (92.84 percent) of the images reconstructed from templates of partition fa (fb) can be identified from partition fa in color FERET. Our study demonstrates the need to secure deep templates in face recognition systems
Beschreibung:Date Completed 27.01.2020
Date Revised 27.01.2020
published: Print-Electronic
Citation Status MEDLINE
ISSN:1939-3539
DOI:10.1109/TPAMI.2018.2827389