Linear Maximum Margin Classifier for Learning from Uncertain Data

In this paper, we propose a maximum margin classifier that deals with uncertainty in data input. More specifically, we reformulate the SVM framework such that each training example can be modeled by a multi-dimensional Gaussian distribution described by its mean vector and its covariance matrix-the...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 40(2018), 12 vom: 14. Dez., Seite 2948-2962
Auteur principal: Tzelepis, Christos (Auteur)
Autres auteurs: Mezaris, Vasileios, Patras, Ioannis
Format: Article en ligne
Langue:English
Publié: 2018
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article Research Support, Non-U.S. Gov't