Linear Maximum Margin Classifier for Learning from Uncertain Data
In this paper, we propose a maximum margin classifier that deals with uncertainty in data input. More specifically, we reformulate the SVM framework such that each training example can be modeled by a multi-dimensional Gaussian distribution described by its mean vector and its covariance matrix-the...
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence. - 1979. - 40(2018), 12 vom: 14. Dez., Seite 2948-2962 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2018
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on pattern analysis and machine intelligence |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't |
Online verfügbar |
Volltext |