Retrieval Oriented Deep Feature Learning With Complementary Supervision Mining

Deep convolutional neural networks (CNNs) have been widely and successfully applied in many computer vision tasks, such as classification, detection, semantic segmentation, and so on. As for image retrieval, while off-the-shelf CNN features from models trained for classification task are demonstrate...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 27(2018), 10 vom: 09. Okt., Seite 4945-4957
1. Verfasser: Lv, Yue (VerfasserIn)
Weitere Verfasser: Zhou, Wengang, Tian, Qi, Sun, Shaoyan, Li, Houqiang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM286278480
003 DE-627
005 20231225051330.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2018.2845120  |2 doi 
028 5 2 |a pubmed24n0954.xml 
035 |a (DE-627)NLM286278480 
035 |a (NLM)29985135 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lv, Yue  |e verfasserin  |4 aut 
245 1 0 |a Retrieval Oriented Deep Feature Learning With Complementary Supervision Mining 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.07.2018 
500 |a Date Revised 30.07.2018 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Deep convolutional neural networks (CNNs) have been widely and successfully applied in many computer vision tasks, such as classification, detection, semantic segmentation, and so on. As for image retrieval, while off-the-shelf CNN features from models trained for classification task are demonstrated promising, it remains a challenge to learn specific features oriented for instance retrieval. Witnessing the great success of low-level SIFT feature in image retrieval and its complementary nature to the semantic-aware CNN feature, in this paper, we propose to embed the SIFT feature into the CNN feature with a Siamese structure in a learning-based paradigm. The learning objective consists of two kinds of loss, i.e., similarity loss and fidelity loss. The first loss embeds the image-level nearest neighborhood structure with the SIFT feature into CNN feature learning, while the second loss imposes that the CNN feature with the updated CNN model preserves the fidelity of that from the original CNN model solely trained for classification. After the learning, the generated CNN feature inherits the property of the SIFT feature, which is well oriented for image retrieval. We evaluate our approach on the public data sets, and comprehensive experiments demonstrate the effectiveness of the proposed method 
650 4 |a Journal Article 
700 1 |a Zhou, Wengang  |e verfasserin  |4 aut 
700 1 |a Tian, Qi  |e verfasserin  |4 aut 
700 1 |a Sun, Shaoyan  |e verfasserin  |4 aut 
700 1 |a Li, Houqiang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 27(2018), 10 vom: 09. Okt., Seite 4945-4957  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:27  |g year:2018  |g number:10  |g day:09  |g month:10  |g pages:4945-4957 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2018.2845120  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 27  |j 2018  |e 10  |b 09  |c 10  |h 4945-4957