Retrieval Oriented Deep Feature Learning With Complementary Supervision Mining
Deep convolutional neural networks (CNNs) have been widely and successfully applied in many computer vision tasks, such as classification, detection, semantic segmentation, and so on. As for image retrieval, while off-the-shelf CNN features from models trained for classification task are demonstrate...
Veröffentlicht in: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 27(2018), 10 vom: 09. Okt., Seite 4945-4957 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2018
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society |
Schlagworte: | Journal Article |
Zusammenfassung: | Deep convolutional neural networks (CNNs) have been widely and successfully applied in many computer vision tasks, such as classification, detection, semantic segmentation, and so on. As for image retrieval, while off-the-shelf CNN features from models trained for classification task are demonstrated promising, it remains a challenge to learn specific features oriented for instance retrieval. Witnessing the great success of low-level SIFT feature in image retrieval and its complementary nature to the semantic-aware CNN feature, in this paper, we propose to embed the SIFT feature into the CNN feature with a Siamese structure in a learning-based paradigm. The learning objective consists of two kinds of loss, i.e., similarity loss and fidelity loss. The first loss embeds the image-level nearest neighborhood structure with the SIFT feature into CNN feature learning, while the second loss imposes that the CNN feature with the updated CNN model preserves the fidelity of that from the original CNN model solely trained for classification. After the learning, the generated CNN feature inherits the property of the SIFT feature, which is well oriented for image retrieval. We evaluate our approach on the public data sets, and comprehensive experiments demonstrate the effectiveness of the proposed method |
---|---|
Beschreibung: | Date Completed 30.07.2018 Date Revised 30.07.2018 published: Print Citation Status PubMed-not-MEDLINE |
ISSN: | 1941-0042 |
DOI: | 10.1109/TIP.2018.2845120 |