Retrieval Oriented Deep Feature Learning With Complementary Supervision Mining

Deep convolutional neural networks (CNNs) have been widely and successfully applied in many computer vision tasks, such as classification, detection, semantic segmentation, and so on. As for image retrieval, while off-the-shelf CNN features from models trained for classification task are demonstrate...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 27(2018), 10 vom: 09. Okt., Seite 4945-4957
1. Verfasser: Lv, Yue (VerfasserIn)
Weitere Verfasser: Zhou, Wengang, Tian, Qi, Sun, Shaoyan, Li, Houqiang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Deep convolutional neural networks (CNNs) have been widely and successfully applied in many computer vision tasks, such as classification, detection, semantic segmentation, and so on. As for image retrieval, while off-the-shelf CNN features from models trained for classification task are demonstrated promising, it remains a challenge to learn specific features oriented for instance retrieval. Witnessing the great success of low-level SIFT feature in image retrieval and its complementary nature to the semantic-aware CNN feature, in this paper, we propose to embed the SIFT feature into the CNN feature with a Siamese structure in a learning-based paradigm. The learning objective consists of two kinds of loss, i.e., similarity loss and fidelity loss. The first loss embeds the image-level nearest neighborhood structure with the SIFT feature into CNN feature learning, while the second loss imposes that the CNN feature with the updated CNN model preserves the fidelity of that from the original CNN model solely trained for classification. After the learning, the generated CNN feature inherits the property of the SIFT feature, which is well oriented for image retrieval. We evaluate our approach on the public data sets, and comprehensive experiments demonstrate the effectiveness of the proposed method
Beschreibung:Date Completed 30.07.2018
Date Revised 30.07.2018
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1941-0042
DOI:10.1109/TIP.2018.2845120