A 3D Magnetic Hyaluronic Acid Hydrogel for Magnetomechanical Neuromodulation of Primary Dorsal Root Ganglion Neurons

© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - (2018) vom: 10. Juni, Seite e1800927
1. Verfasser: Tay, Andy (VerfasserIn)
Weitere Verfasser: Sohrabi, Ali, Poole, Kate, Seidlits, Stephanie, Di Carlo, Dino
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article biomaterials hyaluronic acid hydrogels magnetic materials neural modulation
LEADER 01000caa a22002652 4500
001 NLM285329146
003 DE-627
005 20240229161725.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.201800927  |2 doi 
028 5 2 |a pubmed24n1308.xml 
035 |a (DE-627)NLM285329146 
035 |a (NLM)29888402 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Tay, Andy  |e verfasserin  |4 aut 
245 1 2 |a A 3D Magnetic Hyaluronic Acid Hydrogel for Magnetomechanical Neuromodulation of Primary Dorsal Root Ganglion Neurons 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 
520 |a Neuromodulation tools are useful to decipher and modulate neural circuitries implicated in functions and diseases. Existing electrical and chemical tools cannot offer specific neural modulation while optogenetics has limitations for deep tissue interfaces, which might be overcome by miniaturized optoelectronic devices in the future. Here, a 3D magnetic hyaluronic hydrogel is described that offers noninvasive neuromodulation via magnetomechanical stimulation of primary dorsal root ganglion (DRG) neurons. The hydrogel shares similar biochemical and biophysical properties as the extracellular matrix of spinal cord, facilitating healthy growth of functional neurites and expression of excitatory and inhibitory ion channels. By testing with different neurotoxins, and micropillar substrate deflections with electrophysical recordings, it is found that acute magnetomechanical stimulation induces calcium influx in DRG neurons primarily via endogenous, mechanosensitive TRPV4 and PIEZO2 channels. Next, capitalizing on the receptor adaptation characteristic of DRG neurons, chronic magnetomechanical stimulation is performed and found that it reduces the expression of PIEZO2 channels, which can be useful for modulating pain where mechanosensitive channels are typically overexpressed. A general strategy is thus offered for neuroscientists and material scientists to fabricate 3D magnetic biomaterials tailored to different types of excitable cells for remote magnetomechanical modulation 
650 4 |a Journal Article 
650 4 |a biomaterials 
650 4 |a hyaluronic acid 
650 4 |a hydrogels 
650 4 |a magnetic materials 
650 4 |a neural modulation 
700 1 |a Sohrabi, Ali  |e verfasserin  |4 aut 
700 1 |a Poole, Kate  |e verfasserin  |4 aut 
700 1 |a Seidlits, Stephanie  |e verfasserin  |4 aut 
700 1 |a Di Carlo, Dino  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g (2018) vom: 10. Juni, Seite e1800927  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g year:2018  |g day:10  |g month:06  |g pages:e1800927 
856 4 0 |u http://dx.doi.org/10.1002/adma.201800927  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2018  |b 10  |c 06  |h e1800927