A 3D Magnetic Hyaluronic Acid Hydrogel for Magnetomechanical Neuromodulation of Primary Dorsal Root Ganglion Neurons

© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - (2018) vom: 10. Juni, Seite e1800927
1. Verfasser: Tay, Andy (VerfasserIn)
Weitere Verfasser: Sohrabi, Ali, Poole, Kate, Seidlits, Stephanie, Di Carlo, Dino
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article biomaterials hyaluronic acid hydrogels magnetic materials neural modulation
Beschreibung
Zusammenfassung:© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Neuromodulation tools are useful to decipher and modulate neural circuitries implicated in functions and diseases. Existing electrical and chemical tools cannot offer specific neural modulation while optogenetics has limitations for deep tissue interfaces, which might be overcome by miniaturized optoelectronic devices in the future. Here, a 3D magnetic hyaluronic hydrogel is described that offers noninvasive neuromodulation via magnetomechanical stimulation of primary dorsal root ganglion (DRG) neurons. The hydrogel shares similar biochemical and biophysical properties as the extracellular matrix of spinal cord, facilitating healthy growth of functional neurites and expression of excitatory and inhibitory ion channels. By testing with different neurotoxins, and micropillar substrate deflections with electrophysical recordings, it is found that acute magnetomechanical stimulation induces calcium influx in DRG neurons primarily via endogenous, mechanosensitive TRPV4 and PIEZO2 channels. Next, capitalizing on the receptor adaptation characteristic of DRG neurons, chronic magnetomechanical stimulation is performed and found that it reduces the expression of PIEZO2 channels, which can be useful for modulating pain where mechanosensitive channels are typically overexpressed. A general strategy is thus offered for neuroscientists and material scientists to fabricate 3D magnetic biomaterials tailored to different types of excitable cells for remote magnetomechanical modulation
Beschreibung:Date Revised 27.02.2024
published: Print-Electronic
Citation Status Publisher
ISSN:1521-4095
DOI:10.1002/adma.201800927