Microfluidics-Enabled Multimaterial Maskless Stereolithographic Bioprinting

© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 30(2018), 27 vom: 29. Juli, Seite e1800242
1. Verfasser: Miri, Amir K (VerfasserIn)
Weitere Verfasser: Nieto, Daniel, Iglesias, Luis, Goodarzi Hosseinabadi, Hossein, Maharjan, Sushila, Ruiz-Esparza, Guillermo U, Khoshakhlagh, Parastoo, Manbachi, Amir, Dokmeci, Mehmet Remzi, Chen, Shaochen, Shin, Su Ryon, Zhang, Yu Shrike, Khademhosseini, Ali
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article bioprinting digital light prototyping digital micromirror devices microfluidics multimaterials Vascular Endothelial Growth Factor A Hydrogel, Polyethylene Glycol Dimethacrylate 25852-47-5
Beschreibung
Zusammenfassung:© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A stereolithography-based bioprinting platform for multimaterial fabrication of heterogeneous hydrogel constructs is presented. Dynamic patterning by a digital micromirror device, synchronized by a moving stage and a microfluidic device containing four on/off pneumatic valves, is used to create 3D constructs. The novel microfluidic device is capable of fast switching between different (cell-loaded) hydrogel bioinks, to achieve layer-by-layer multimaterial bioprinting. Compared to conventional stereolithography-based bioprinters, the system provides the unique advantage of multimaterial fabrication capability at high spatial resolution. To demonstrate the multimaterial capacity of this system, a variety of hydrogel constructs are generated, including those based on poly(ethylene glycol) diacrylate (PEGDA) and gelatin methacryloyl (GelMA). The biocompatibility of this system is validated by introducing cell-laden GelMA into the microfluidic device and fabricating cellularized constructs. A pattern of a PEGDA frame and three different concentrations of GelMA, loaded with vascular endothelial growth factor, are further assessed for its neovascularization potential in a rat model. The proposed system provides a robust platform for bioprinting of high-fidelity multimaterial microstructures on demand for applications in tissue engineering, regenerative medicine, and biosensing, which are otherwise not readily achievable at high speed with conventional stereolithographic biofabrication platforms
Beschreibung:Date Completed 06.03.2019
Date Revised 10.06.2024
published: Print-Electronic
Citation Status MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.201800242