Bayesian adaptive bandit-based designs using the Gittins index for multi-armed trials with normally distributed endpoints

Adaptive designs for multi-armed clinical trials have become increasingly popular recently because of their potential to shorten development times and to increase patient response. However, developing response-adaptive designs that offer patient-benefit while ensuring the resulting trial provides a...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics. - 1991. - 45(2018), 6 vom: 12., Seite 1052-1076
1. Verfasser: Smith, Adam L (VerfasserIn)
Weitere Verfasser: Villar, Sofía S
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Journal of applied statistics
Schlagworte:Journal Article Gittins index Multi-armed bandit normally distributed endpoint patient allocation response adaptive procedures sequential sampling
LEADER 01000naa a22002652 4500
001 NLM282077820
003 DE-627
005 20231225033112.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1080/02664763.2017.1342780  |2 doi 
028 5 2 |a pubmed24n0940.xml 
035 |a (DE-627)NLM282077820 
035 |a (NLM)29551849 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Smith, Adam L  |e verfasserin  |4 aut 
245 1 0 |a Bayesian adaptive bandit-based designs using the Gittins index for multi-armed trials with normally distributed endpoints 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 31.01.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Adaptive designs for multi-armed clinical trials have become increasingly popular recently because of their potential to shorten development times and to increase patient response. However, developing response-adaptive designs that offer patient-benefit while ensuring the resulting trial provides a statistically rigorous and unbiased comparison of the different treatments included is highly challenging. In this paper, the theory of Multi-Armed Bandit Problems is used to define near optimal adaptive designs in the context of a clinical trial with a normally distributed endpoint with known variance. We report the operating characteristics (type I error, power, bias) and patient-benefit of these approaches and alternative designs using simulation studies based on an ongoing trial. These results are then compared to those recently published in the context of Bernoulli endpoints. Many limitations and advantages are similar in both cases but there are also important differences, specially with respect to type I error control. This paper proposes a simulation-based testing procedure to correct for the observed type I error inflation that bandit-based and adaptive rules can induce 
650 4 |a Journal Article 
650 4 |a Gittins index 
650 4 |a Multi-armed bandit 
650 4 |a normally distributed endpoint 
650 4 |a patient allocation 
650 4 |a response adaptive procedures 
650 4 |a sequential sampling 
700 1 |a Villar, Sofía S  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied statistics  |d 1991  |g 45(2018), 6 vom: 12., Seite 1052-1076  |w (DE-627)NLM098188178  |x 0266-4763  |7 nnns 
773 1 8 |g volume:45  |g year:2018  |g number:6  |g day:12  |g pages:1052-1076 
856 4 0 |u http://dx.doi.org/10.1080/02664763.2017.1342780  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2018  |e 6  |b 12  |h 1052-1076