Monolayer Nanosheets with an Extremely High Drug Loading toward Controlled Delivery and Cancer Theranostics

© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 30(2018), 16 vom: 05. Apr., Seite e1707389
1. Verfasser: Peng, Liuqi (VerfasserIn)
Weitere Verfasser: Mei, Xuan, He, Jun, Xu, Jiekun, Zhang, Weiku, Liang, Ruizheng, Wei, Min, Evans, David G, Duan, Xue
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article 2D nanomaterials cancer theranostics drug loading layered double hydroxides monolayer nanosheets Doxorubicin 80168379AG
Beschreibung
Zusammenfassung:© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2D nanomaterials have attracted considerable research interest in drug delivery systems, owing to their intriguing quantum size and surface effect. Herein, Gd3+ -doped monolayered-double-hydroxide (MLDH) nanosheets are prepared via a facile bottom-up synthesis method, with a precisely controlled composition and uniform morphology. MLDH nanosheets as drug carrier are demonstrated in coloading of doxorubicin and indocyanine green (DOX&ICG), with an ultrahigh drug loading content (LC) of 797.36% and an encapsulation efficiency (EE) of 99.67%. This is, as far as it is known, the highest LC level at nearly 100% of EE among previously reported 2D drug delivery systems so far. Interestingly, the as-prepared DOX&ICG/MLDH composite material shows both pH-controlled and near-infrared-irradiation-induced DOX release, which holds a promise in stimulated drug release. An in vivo dual-mode imaging, including near-infrared fluorescence and magnetic resonance imaging, enables a noninvasive visualization of distribution profiles at the tumor site. In addition, in vitro and in vivo therapeutic evaluations demonstrate an excellent trimode synergetic anticancer activity and superior biocompatibility of DOX&ICG/MLDH. Therefore, MLDH nanosheets provide new perspectives in the design of multifunctional nanomedicine, which shows promising applications in controlled drug delivery and cancer theranostics
Beschreibung:Date Completed 06.02.2019
Date Revised 30.09.2020
published: Print-Electronic
Citation Status MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.201707389