Ropinirole and Pramipexole Promote Structural Plasticity in Human iPSC-Derived Dopaminergic Neurons via BDNF and mTOR Signaling

The antiparkinsonian ropinirole and pramipexole are D3 receptor- (D3R-) preferring dopaminergic (DA) agonists used as adjunctive therapeutics for the treatment resistant depression (TRD). While the exact antidepressant mechanism of action remains uncertain, a role for D3R in the restoration of impai...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Neural plasticity. - 1998. - 2018(2018) vom: 17., Seite 4196961
1. Verfasser: Collo, Ginetta (VerfasserIn)
Weitere Verfasser: Cavalleri, Laura, Bono, Federica, Mora, Cristina, Fedele, Stefania, Invernizzi, Roberto William, Gennarelli, Massimo, Piovani, Giovanna, Kunath, Tilo, Millan, Mark J, Merlo Pich, Emilio, Spano, PierFranco
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Neural plasticity
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Antiparkinson Agents Benzothiazoles Brain-Derived Neurotrophic Factor Indoles ropinirole 030PYR8953 BDNF protein, human 7171WSG8A2 mehr... Pramipexole 83619PEU5T MTOR protein, human EC 2.7.1.1 TOR Serine-Threonine Kinases EC 2.7.11.1
Beschreibung
Zusammenfassung:The antiparkinsonian ropinirole and pramipexole are D3 receptor- (D3R-) preferring dopaminergic (DA) agonists used as adjunctive therapeutics for the treatment resistant depression (TRD). While the exact antidepressant mechanism of action remains uncertain, a role for D3R in the restoration of impaired neuroplasticity occurring in TRD has been proposed. Since D3R agonists are highly expressed on DA neurons in humans, we studied the effect of ropinirole and pramipexole on structural plasticity using a translational model of human-inducible pluripotent stem cells (hiPSCs). Two hiPSC clones from healthy donors were differentiated into midbrain DA neurons. Ropinirole and pramipexole produced dose-dependent increases of dendritic arborization and soma size after 3 days of culture, effects antagonized by the selective D3R antagonists SB277011-A and S33084 and by the mTOR pathway kinase inhibitors LY294002 and rapamycin. All treatments were also effective in attenuating the D3R-dependent increase of p70S6-kinase phosphorylation. Immunoneutralisation of BDNF, inhibition of TrkB receptors, and blockade of MEK-ERK signaling likewise prevented ropinirole-induced structural plasticity, suggesting a critical interaction between BDNF and D3R signaling pathways. The highly similar profiles of data acquired with DA neurons derived from two hiPSC clones underpin their reliability for characterization of pharmacological agents acting via dopaminergic mechanisms
Beschreibung:Date Completed 27.11.2018
Date Revised 04.12.2021
published: Electronic-eCollection
Citation Status MEDLINE
ISSN:1687-5443
DOI:10.1155/2018/4196961