|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM281846308 |
003 |
DE-627 |
005 |
20231225032555.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2019 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1111/cobi.13104
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0939.xml
|
035 |
|
|
|a (DE-627)NLM281846308
|
035 |
|
|
|a (NLM)29528136
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Di Minin, Enrico
|e verfasserin
|4 aut
|
245 |
1 |
2 |
|a A framework for investigating illegal wildlife trade on social media with machine learning
|
264 |
|
1 |
|c 2019
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 17.10.2019
|
500 |
|
|
|a Date Revised 25.07.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a © 2018 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.
|
520 |
|
|
|a Article impact statement: Machine learning can be used to automatically monitor and assess illegal wildlife trade on social media platforms
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
700 |
1 |
|
|a Fink, Christoph
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hiippala, Tuomo
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Tenkanen, Henrikki
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Conservation biology : the journal of the Society for Conservation Biology
|d 1999
|g 33(2019), 1 vom: 05. Feb., Seite 210-213
|w (DE-627)NLM098176803
|x 1523-1739
|7 nnns
|
773 |
1 |
8 |
|g volume:33
|g year:2019
|g number:1
|g day:05
|g month:02
|g pages:210-213
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1111/cobi.13104
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 33
|j 2019
|e 1
|b 05
|c 02
|h 210-213
|