A framework for investigating illegal wildlife trade on social media with machine learning
© 2018 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.
| Veröffentlicht in: | Conservation biology : the journal of the Society for Conservation Biology. - 1989. - 33(2019), 1 vom: 05. Feb., Seite 210-213 |
|---|---|
| 1. Verfasser: | |
| Weitere Verfasser: | , , |
| Format: | Online-Aufsatz |
| Sprache: | English |
| Veröffentlicht: |
2019
|
| Zugriff auf das übergeordnete Werk: | Conservation biology : the journal of the Society for Conservation Biology |
| Schlagworte: | Journal Article Research Support, Non-U.S. Gov't |
| Zusammenfassung: | © 2018 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology. Article impact statement: Machine learning can be used to automatically monitor and assess illegal wildlife trade on social media platforms |
|---|---|
| Beschreibung: | Date Completed 17.10.2019 Date Revised 25.07.2020 published: Print-Electronic Citation Status MEDLINE |
| ISSN: | 1523-1739 |
| DOI: | 10.1111/cobi.13104 |