|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM281690898 |
003 |
DE-627 |
005 |
20231225032218.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2018 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1111/nph.15066
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0938.xml
|
035 |
|
|
|a (DE-627)NLM281690898
|
035 |
|
|
|a (NLM)29512162
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Kou, Liang
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Nitrogen deposition increases root production and turnover but slows root decomposition in Pinus elliottii plantations
|
264 |
|
1 |
|c 2018
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 01.10.2019
|
500 |
|
|
|a Date Revised 30.09.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
|
520 |
|
|
|a Fine roots of woody plants comprise multiple root orders, which can be functionally partitioned into two pools: absorptive fine roots (AFRs, orders 1, 2) and transport fine roots (TFRs, orders 3-5). However, the function-based fine-root dynamics and especially their responses to increased nitrogen (N) availability remain unclear. We explored dynamic responses of both AFRs and TFRs of Pinus elliottii to N addition in subtropical China based on a 4-yr minirhizotron experiment and a two-stage - early (0.5 yr) vs late (4 yr) - decomposition experiment. N addition increased the production, mortality, and turnover of AFRs but not TFRs. High rates of N persistently inhibited AFR decomposition but affected TFR decomposition differentially at the early (no effect) and late (negative effect) stages. The increased production of AFRs was driven by N-induced decrease in foliar and soil phosphorus (P) concentrations. The decreased decomposition of AFRs might be due to the increased acid-unhydrolyzable residues in decomposing roots. AFRs are the resource-acquiring module, the increased carbon allocation to AFRs may represent a P-acquiring strategy when N no longer limits growth of P. elliottii. Our results suggest that AFRs and TFRs respond differently to N deposition, both in terms of production, mortality, and turnover and in terms of decomposition
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
4 |
|a absorptive fine root
|
650 |
|
4 |
|a branching order
|
650 |
|
4 |
|a carbon sequestration
|
650 |
|
4 |
|a functional module
|
650 |
|
4 |
|a minirhizotron
|
650 |
|
4 |
|a nitrogen deposition
|
650 |
|
4 |
|a nutrient limitation
|
650 |
|
7 |
|a Soil
|2 NLM
|
650 |
|
7 |
|a Nitrogen
|2 NLM
|
650 |
|
7 |
|a N762921K75
|2 NLM
|
700 |
1 |
|
|a Jiang, Lei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Fu, Xiaoli
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Dai, Xiaoqin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Huimin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Shenggong
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t The New phytologist
|d 1979
|g 218(2018), 4 vom: 01. Juni, Seite 1450-1461
|w (DE-627)NLM09818248X
|x 1469-8137
|7 nnns
|
773 |
1 |
8 |
|g volume:218
|g year:2018
|g number:4
|g day:01
|g month:06
|g pages:1450-1461
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1111/nph.15066
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 218
|j 2018
|e 4
|b 01
|c 06
|h 1450-1461
|