Nitrogen deposition increases root production and turnover but slows root decomposition in Pinus elliottii plantations

© 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

Bibliographische Detailangaben
Veröffentlicht in:The New phytologist. - 1979. - 218(2018), 4 vom: 01. Juni, Seite 1450-1461
1. Verfasser: Kou, Liang (VerfasserIn)
Weitere Verfasser: Jiang, Lei, Fu, Xiaoli, Dai, Xiaoqin, Wang, Huimin, Li, Shenggong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:The New phytologist
Schlagworte:Journal Article Research Support, Non-U.S. Gov't absorptive fine root branching order carbon sequestration functional module minirhizotron nitrogen deposition nutrient limitation Soil mehr... Nitrogen N762921K75
Beschreibung
Zusammenfassung:© 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
Fine roots of woody plants comprise multiple root orders, which can be functionally partitioned into two pools: absorptive fine roots (AFRs, orders 1, 2) and transport fine roots (TFRs, orders 3-5). However, the function-based fine-root dynamics and especially their responses to increased nitrogen (N) availability remain unclear. We explored dynamic responses of both AFRs and TFRs of Pinus elliottii to N addition in subtropical China based on a 4-yr minirhizotron experiment and a two-stage - early (0.5 yr) vs late (4 yr) - decomposition experiment. N addition increased the production, mortality, and turnover of AFRs but not TFRs. High rates of N persistently inhibited AFR decomposition but affected TFR decomposition differentially at the early (no effect) and late (negative effect) stages. The increased production of AFRs was driven by N-induced decrease in foliar and soil phosphorus (P) concentrations. The decreased decomposition of AFRs might be due to the increased acid-unhydrolyzable residues in decomposing roots. AFRs are the resource-acquiring module, the increased carbon allocation to AFRs may represent a P-acquiring strategy when N no longer limits growth of P. elliottii. Our results suggest that AFRs and TFRs respond differently to N deposition, both in terms of production, mortality, and turnover and in terms of decomposition
Beschreibung:Date Completed 01.10.2019
Date Revised 30.09.2020
published: Print-Electronic
Citation Status MEDLINE
ISSN:1469-8137
DOI:10.1111/nph.15066